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1. Introduction

It is considered ‘common sense’ among financial investors to
maximize the portfolio return while satisfying some risk con-
straint. The mean-variance technique addressing this problem
has been introduced by Markowitz in 1952 and is developed
in Markowitz (1991). The objective in portfolio selection is
decreasing the investment downside risk; this risk is quanti-
fied through various measures like value at risk (VaR). These
notions of risk measures in portfolio selection and risk man-
agement have resulted in a great deal of published literature.
For example, the notion of VaR, as the α-quantile subtracted
from the mean of the portfolio return has been thoroughly
investigated in Duffie and Pan (1997) and Jorion (2007), which

∗Corresponding author. Email: mkwak@hufs.ac.kr

turns out to suffer from being a non-coherent risk measure.
Capital at risk (CaR) is introduced to resolve this problem. CaR
differs from VaR by a constant (it is VaR adjusted to the riskless
return). Some other risk measures, such as average value at
risk (AVaR) and limited expected loss, were introduced to
address the shortcomings of VaR.Analytical formulas for these
types of risk measures, as well as risk constrained portfolio
optimization in a continuous time framework are provided in
Gambrah and Pirvu (2014).

Portfolio selection under bounded CaR is well explored
in Emmer et al. (2001). In the Black–Scholes setting with
constant coefficients, they obtained a closed form solution
for the optimal portfolio with maximum mean return, sub-
ject to a bounded CaR. It has been shown in Emmer et al.
(2001) that the use of merely variance-based measures leads
to a decreased proportion of risky assets in a portfolio when
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the planning horizon increases, which can be resolved when
CaR is employed; this argument supports the use of CaR in
risk management. The results in Emmer et al. (2001) have
been extended to allow the no-short-selling constraint in
Dmitrašinović-Vidović et al. (2011). The counter-intuitive
behaviour in VaR constrained optimized portfolios, with an
increase in investment time horizon has been shown in Dmi-
trašinović-Vidović and Ware (2006).

The literature on portfolio selection given a correlation con-
straint is rather limited. Bernard and Vanduffel (2014) studied
mean variance optimal portfolios in the presence of a stochastic
benchmark correlated with the market, and discussed how their
method could be used to detect fraud in financial reports. For
example, under some conditions one could not have a positive
Sharpe ratio while having a negative correlation with the mar-
ket index. Bernard et al. (2015) investigated optimal portfolio
selection with state-dependent preferences, and the optimal
portfolio of this paper in a complete market can also be derived
by following their approach. However, we mainly consider
an incomplete market model and the complete market case is
obtained as a special case of the result under an incomplete
market model.

In an incomplete market Black–Scholes setting, this
paper provides the closed form solution to the CaR minimizing
portfolio that satisfies a correlation constraint between the in-
vestor’s terminal wealth and a given index process.
One possible choice of this index is the growth optimal portfo-
lio (GOP) according to Bernard and Vanduffel (2014).
Applying the correlation constraint is useful in some situa-
tions. For example, maintaining a negative correlation with the
market index allows one to better control the risky investment
during a market crash (i.e. when the market index is heavily
declining); in these situations, the negative correlation could
rescue the portfolio from collapse. By analysing the closed
form solutions of the constrained and unconstrained portfolio
selection problems, we notice that the correlation constraint
leads to more diversified portfolios if variance is used as the
measure of diversification.

The rest of the paper is organized as follows. In section
2, we introduce the market model, and our specific notion of
CaR. Section 3 briefly reiterates the minimization problem of
CaR. Section 4 is devoted to the problem of CaR minimization
under the correlation constraint. The complete market model is
considered in section 5.1, which is followed by some numerical
examples. The paper concludes in section 6. The proofs of the
results are delegated to appendix 1.

2. Model

Consider a probability space (�, {Ft }0≤t≤T , P), which ac-
commodates a standard multidimensional Brownian motion.
Throughout this paper, we restrict ourselves to a geometric
Brownian motion model for stock prices. Let us consider a
financial market model with the following specifications.

• Assets are traded continuously over a finite time horizon
[0, T ] in a frictionless market.

• There is one risk-free asset, denoted by S0(t), with
positive constant interest rate r :

dS0(t)

S0(t)
= rdt.

• There are m risky assets (stocks), driven by a
d-dimensional Brownian motion W(t) = [W1(t) . . .

Wd(t)]′:
dSi (t)

Si (t)
= (r + bi )dt +

d∑
j=1

σi j dW j (t),

Si (0) = si , i = 1, . . . , m.

The market can generally be incomplete, namely the
number of assets m might be less than the dimension
of Brownian motion (m ≤ d). Here σ = [σi j ] is the
m × d volatility matrix, such that σσ ′ is invertible.
This condition rules out the market arbitrage. Moreover,
b = [

b1 . . . bm
]′ is the vector of excess return rate of

each risky asset, that we take it to be positive.
• Let π = [

π1 . . . πm
]′ ∈ R

m be the portfolio vector of
the investor, where πi indicates the fraction of the total
initial wealth x invested in stock i , that is assumed to
be constant over time. Therefore, π0 = 1 − 1′π is the
fraction of wealth invested in the risk-free asset. We
draw attention to the constant proportions, which are
time invariant, and more tractable. The constant π does
not mean there is no trade, since one needs to rebalance
the portfolio continuously to keep the portion invested
in each asset unchanged over time.
The stochastic differential equation of the wealth process
is

dXπ (t)

Xπ (t)
= (r + b′π)dt + π ′σdW(t), Xπ (0) = x .

Then direct computations lead to

Xπ (T ) = xe[(r+b′π−‖σ ′π‖2
/2)T +π ′σW(T )],

E
(
Xπ (T )

) = xe(r+b′π)T ,

Var(Xπ (T )) = x2e2(r+b′π)T
(

e‖σ ′π‖2T − 1
)

,

Var(log Xπ (T )) = T π ′σσ ′π .

In order to preserve the tractability, risk measurements are per-
formed for logarithmic returns, rather than arithmetic returns.
It is well known that for small time horizons, the two types of
returns are close to each other. Keeping this notion in mind,
we can now present a formal definition of CaR.

Definition 1 (Capital at Risk) Let zα be the α-quantile of the
standard Gaussian distribution. The CaR of a fixed portfolio
vector π is defined as the difference of the riskless Log return
and the α-quantile of the Log return over [0, T ]:
q(x,π , α, T ) = inf {z ∈ R : P

(
log

(
Xπ (T )

Xπ (0)

)
≤ z

)
≥ α}

= (r + b′π)T − 1

2

∥∥σ ′π
∥∥2

T + zα

∥∥σ ′π
∥∥√

T

CaR(π , α, T ) := rT − q(x,π , α, T )

= −b′πT + 1

2

∥∥σ ′π
∥∥2

T − zα

∥∥σ ′π
∥∥√

T .

We assume that α < 0.5, which means zα < 0.
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3. CaR minimization

CaR minimization is first explored in Emmer et al. (2001), in
which a closed form solution is found for the portfolio with
maximum expected return under a bounded CaR constraint.
However, the analysis is for the complete market. The next
proposition studies the CaR minimization under incomplete
market and logarithmic return.Asimilar problem, but for arith-
metic return under complete market hypothesis, has been stud-
ied in Emmer et al. (2001).

Proposition 1 The minimum CaR portfolio, i.e. the solution
of:

argmin
π∈Rd

CaR(π , α, T )

satisfies

σ ′π∗ =
(

zα√
T

+
∥∥∥σ ′(σσ ′)−1b

∥∥∥)+
σ ′(σσ ′)−1b∥∥σ ′(σσ ′)−1b

∥∥ . (1)

Moreover, the minimum CaR is

CaR(π∗, α, T ) = −T

2

[(
zα√

T
+
∥∥∥σ ′(σσ ′)−1b

∥∥∥)+]2

. (2)

The proof of this proposition is given in the appendix 1. As
a straightforward corollary of this proposition, one can find
the CaR minimizing portfolio in the complete market case (the
volatility matrix σ is invertible). Indeed, in this case π∗ is
obtained from (1) to be:

π∗ =
(

zα√
T

+
∥∥∥σ−1b

∥∥∥)+
(σσ ′)−1b∥∥σ−1b

∥∥ . (3)

σ ′π∗ = σ ′

⎡
⎢⎢⎢⎣

√
1 − δ2

(
zα‖σ ′η‖√

T
+ √

1 − δ2
√∥∥σ ′(σσ ′)−1b

∥∥2 ‖σ ′η‖2 − (b′η)2 − δb′η
)+ (

(σσ ′)−1bT − λ∗η
)

T
√∥∥σ ′(σσ ′)−1b

∥∥2 ‖σ ′η‖2 − (b′η)2

⎤
⎥⎥⎥⎦ . (7)

4. CaR minimization under correlation constraint

In this section, we focus on minimizing the CaR subject to
a correlation constraint. In other words, we want to find the
optimal portfolio that minimizes the CaR, as well as satisfies a
correlation constraint with another index process. Assume that
the index dynamics is given by:

dY (t)

Y (t)
= (r + b′η)dt + η′σdW(t), Y (0) = y, (4)

where η is the index portfolio. Moreover, we assume that the
target process has positive excess return over r , i.e. b′η > 0,
and enforce that the correlation between the log values of X (T )

and Y (T ) does not exceed a negative threshold. This condition
is expressed as:

Corr(log X (T ), log Y (T )) ≤ −δ, where δ ≥ 0.

The Y process can be any financial index or wealth process,
which is driven by the same sources of uncertainty as stocks in

a market. The correlation between terminal log values is found
in a closed form as follows.

Corr(log X (T ), log Y (T )) = π ′σσ ′η
‖σ ′π‖ ‖σ ′η‖ .

Then the risk minimization problem under correlation con-
straint is:

min
π∈Rm

CaR(π , α, T )

subject to Corr(log X (T ), log Y (T )) ≤ −δ. (5)

Notice that we consider the following problem, rather than the
problem in (5).

min
π∈Rm

(
−b′πT + 1

2

∥∥σ ′π
∥∥2

T − zα

∥∥σ ′π
∥∥√

T

)
subject to δ

∥∥σ ′η
∥∥ ∥∥σ ′π

∥∥+ π ′σσ ′η ≤ 0. (6)

There is a subtle difference between (5) and (6), which arises
for zero portfolio π . This vector is contained in the region
of the second optimization problem, but not in the first, be-
cause the correlation cannot be defined for the zero portfolio.
Hence, it is not surprising if the zero vector happens to be the
optimal portfolio of problem (6). The condition of negative
correlation is imposed for tractability reasons (it renders the
optimization problem convex). Moreover, it has a financial
interpretation: in times of financial downturns, it is desirable to
be negatively correlated with the market index Y (t). Because
of the explicit formulation of the problem, the solution can
be found analytically with convex optimization methods. The
following theorem presents the main result of the paper.

Theorem 1 The optimal portfolios that solve (6) should sat-
isfy: The parameter λ∗ is given by

λ∗ = 1

‖σ ′η‖2

×
(

b′ηT + T δ√
1 − δ2

√∥∥σ ′(σσ ′)−1b
∥∥2 ‖σ ′η‖2 − (b′η)2

)
,

and the minimum CaR is

CaR(π∗, α, T ) = −T

2 ‖σ ′η‖2

[(
zα

∥∥σ ′η
∥∥

√
T

+
√

1 − δ2
√∥∥σ ′(σσ ′)−1b

∥∥2 ‖σ ′η‖2 − (b′η)2 − δb′η
)+]2

.

(8)

The proof of theorem 1 is given in the appendix 1. Similar to
the unconstrained case in section 3, the complete market case
of constrained problem can be obtained by assuming that σ is
an invertible square matrix. Then, simplified versions of the
optimal portfolio and the minimal CaR, which correspond to
(7) and (8), respectively, can be derived. It is worth mentioning
that since the system in (7) is underdetermined if the market
is incomplete, there are infinitely many portfolio vectors that
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satisfy (7) and have same CaR value. However, the optimal
portfolio is uniquely determined if the market is complete, i.e.
when σ is invertible.

Remark 1 In complete market, our result can be obtained as a
special case of Bernard et al. (2015), and the optimal portfolio
of complete market can also be derived by using the techniques
in Bernard et al. (2015). However, our main result is obtained
in incomplete market, which is not considered in Bernard et al.
(2015); and furthermore our complete market case is obtained
as a corollary of the results in an incomplete market.

Remark 2 The optimal portfolio in (7) has a two-fund sepa-
ration structure: the first component is similar to the solution
of unconstrained case in (1); and the second component is
induced by the correlation constraint. In the constrained case,
unless the zero portfolio is optimal, the correlation constraint
always binds, that is, λ∗ > 0. This is because the mean excess
return of index process is assumed to be positive, i.e. b′η > 0.
Since the mean excess return of index process is positive, it is
optimal to have greatest correlation with index process under
the correlation constraint, which is −δ. More details can be
ascertained from the proof of theorem 1.

Example 1 The main purpose of this example is to identify the
effect of the correlation constraint in risk reduction under an
incomplete market situation. We take the simple scenario of
two stocks with the given volatility matrix, and excess return
rate vector:

σ :=
[
σ1 0 ρ

0 σ2 0

]
b :=

[
b1
b2

]
.

The positive volatility ρ is the idiosyncratic risk of the first
asset. Let us consider the case where the benchmark portfolio
contains the second stock, i.e. η := [

0 η2
]′. If we denote the

optimal portfolio of the unconstrained problem as π∗ and that
of the constrained problem as π∗

c , then we can easily compute
the variances of their log returns as follows:

Var(log Xπ∗(T )) = T

⎡
⎣( zα√

T
+
√

b2
1

σ 2
1 + ρ2

+ b2
2

σ 2
2

)+⎤⎦
2

,

Var(log Xπ∗
c (T ))

= T

⎡
⎣
⎛
⎝ zα√

T
+
√

1 − δ2 b1√
σ 2

1 + ρ2
− δb2η2

⎞
⎠

+⎤
⎦

2

.

Since b′η = b2η2 > 0, the variance in the constrained problem
becomes lower, thus yielding a more diversified portfolio.

5. The complete market case

5.1. Choice of benchmark process in complete market

In this section, we study the special choice of a benchmark pro-
cess as the target index. Moreover, we assume that the market is
complete, that is, the number of available stocks m is identical
to the Brownian motion dimension d and σ is invertible. The
assets are regrouped into two parts: the risky assets that are
included in the index portfolio η, and some additional risky
assets that are available to the investor’s portfolio π , but not a

part of the index portfolio η. Let us decompose the Brownian
motion vector as W(t) = [

W1(t)′ W2(t)′
]′, where the first

component is 
 dimensional. Moreover, without any loss of
generality, we can represent the volatility matrix and its inverse
as:

σ =
[
σ11 0
σ21 σ22

]
, σ−1 =

[
σ−1

11 0
−σ−1

22 σ21σ
−1
11 σ−1

22

]
. (9)

Here σ11 and σ22 are square 
 and d −
 matrices, respectively.
And σ21 and 0 are (d − 
) × 
 and 
 × (d − 
) matrices,
respectively. Consequently, there are two types of stocks: the
first type is only driven by W1(t), and the second type is driven
by both components of the Brownian motion. Following the
similar setting to the previous section, the investor’s wealth
process is expressed as

dX (t)

X (t)
= (r + b′π)dt + [

π ′
1 π ′

2

] [σ11 0
σ21 σ22

] [
dW1(t)
dW2(t)

]
= (r + b′π)dt + (π ′

1σ11 + π ′
2σ21)dW1(t)

+ π ′
2σ22dW2(t),

where π ′ = [
π ′

1 π ′
2

]
and b′ = [

b′
1 b′

2

]
. π1 and π2 are portfolio

vectors for the first type assets and the second type assets, re-
spectively, whereas b1 and b2 are average excess return vectors
for the first type assets and the second type assets, respectively.
Note that π1 and b1 are l dimensional column vectors, and π2
and b1 are d − l dimensional column vectors.

Following Bernard and Vanduffel (2014), the index process
is taken to be the GOP. As argued in Platen (2006), under some
conditions GOP is the inverse of stochastic discount factor,
or equivalently the numéraire process, as in Christensen and
Larsen (2007). Let us re-emphasize that only the first type of
stocks is considered to construct the market index. Hence, if
θ = σ−1

11 b1 denotes the market price of risk of the first type of
stocks, the stochastic discount factor ξ is governed by:

dξ(t)

ξ(t)
= −rdt − θ ′dW1(t).

Consequently, the index process Y (t) = ξ(t)−1 satisfies the
following SDE:

dY (t)

Y (t)
= (r + ‖θ‖2)dt + θ ′dW1(t)

= (r +
∥∥∥σ−1

11 b1

∥∥∥2
)dt + ((σ11σ

′
11)

−1b1)
′σ11dW1(t).

One can compare (4) with the dynamics of GOP to take the
index portfolio η as

[
((σ11σ

′
11)

−1b1)
′ 0
]′

. The next propo-
sition uses this special choice of index portfolio vector in
theorem 1.

Proposition 2 The optimal portfolio minimizing the CaR,
and satisfies the correlation constraint is:

π∗

=
√

1 − δ2
(

zα√
T

+ √
1 − δ2

∥∥∥σ−1
22 b2 − σ−1

22 σ21σ
−1
11 b1

∥∥∥− δ

∥∥∥σ−1
11 b1

∥∥∥)+

T
∥∥∥σ−1

22 b2 − σ−1
22 σ21σ

−1
11 b1

∥∥∥
×
(
(σσ ′)−1bT − λ∗η

)
, (10)
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where λ∗ is given by

λ∗ = T

⎛
⎝1 + δ∥∥∥σ−1

11 b1

∥∥∥√
1 − δ2

∥∥∥σ−1
22 b2 − σ−1

22 σ21σ
−1
11 b1

∥∥∥
⎞
⎠ .

(11)

The proof of proposition 2 is provided in the appendix 1,
which is an immediate consequence of theorem 1.

Since we have closed form expressions in proposition 2,
we can easily examine the impact of the correlation constraint
on the portfolio diversification. Likewise example 1, to dis-
tinguish between the unconstrained case and the constrained
case, all the optimal variables for the problem with the cor-
relation constraint are written with subscript ‘c,’ like π∗

c . The
following proposition shows that, if we take the variance of log
return as a measure of portfolio diversity, a more diversified
portfolio can be obtained in the presence of the correlation con-
straint. The proof of the following proposition is given in the
appendix 1.

Proposition 3 The optimal portfolio of the constrained prob-
lem π∗

c is more diversified than the optimal portfolio of the
unconstrained problem π∗. That is to say:

Var(log Xπ∗
(T )) ≥ Var(log Xπ∗

c (T )).

5.2. Diversification and risk control over market downfalls

As an application of our portfolio optimization problem with
the correlation constraint, we would like to explore the diver-
sification during the period of the market collapse. In order
to be able to track the downfalls in the market and for ease
of exposition, we assume that the market is complete and the
first type of stocks is driven only by a single Brownian mo-
tion. Then by letting large enough values of σ11 (which would
happen during the time of a market crash), we consider the
asymptotic composition of the optimal portfolios (constrained
and unconstrained). As a direct result of (10), we get:

lim
σ11→∞ π∗ =

⎛
⎝ zα∥∥∥σ−1

22 b2

∥∥∥√
T

+ 1

⎞
⎠

+ [
0

(σ22σ
′
22)

−1b2

]
,

lim
σ11→∞ π∗

c =
√

1 − δ2

⎛
⎝ zα∥∥∥σ−1

22 b2

∥∥∥√
T

+
√

1 − δ2

⎞
⎠

+

×
[

0
(σ22σ

′
22)

−1b2

]
.

Let us mention the zero investment in the first type of stocks in
both constrained and unconstrained optimal portfolios, which
is expected owing to the increase of σ11. On the other hand,
the correlation constraint lowers the investment in the second
class of stocks. The diversification benefit of the correlation
constraint can also be seen from considering the asymptotic
variances of log Xπ∗

(T ) and log Xπ∗
c (T ), which are computed

as:

lim
σ11→∞ Var(log Xπ∗

(T )) = T

[(
zα√

T
+
∥∥∥σ−1

22 b2

∥∥∥)+]2

,

lim
σ11→∞ Var(log Xπ∗

c (T )) = T

[(
zα√

T
+
√

1 − δ2
∥∥∥σ−1

22 b2

∥∥∥)+]2

.

5.3. Numerical experiments

In this section, we consider some numerical examples to shed
light on the portfolio diversification achieved by imposing a
correlation constraint. In the numerical experiments we employ
the market parameters of Dmitrašinović-Vidović et al. (2011).
The market consists of three stocks; S1(t) is the first type stock
while S2(t) and S3(t) are second type stocks. Instead of the
volatility matrix σ , Dmitrašinović-Vidović et al. (2011) pro-
vide parameters for the 3×3 correlation matrix ρ and standard
deviations γ1, γ2 and γ3 of returns of the three stocks. Then the
covariance matrix is � = �ρ�, where � = diag(γ1, γ2, γ3),
and the corresponding volatility matrix σ of the form in (9) that
satisfies σσ ′ = � can be obtained by Cholesky decomposition.
We assume that the standard deviations of second type stocks
are given by constants γ2 = 0.25 and γ3 = 0.3.

Example 2 Here we focus on the effect of market asset volatil-
ity on the variance of the log return. By increasing σ11 (equiv-
alently, by increasing γ1), we track the behaviour of log return
variances (these are seen as measures of diversification). Two
sets of correlation matrices and excess mean returns of stocks,
as in Dmitrašinović-Vidović et al. (2011), are investigated:

ρ(1) =
⎡
⎣ 1.0 −0.6 −0.8

−0.6 1.0 0.5
−0.8 0.5 1.0

⎤
⎦ , b(1) = [

0.07 0.05 0.03
]′

,

(12)

ρ(2) =
⎡
⎣ 1.0 −0.3 0.5

−0.3 1.0 −0.9
0.5 −0.9 1.0

⎤
⎦ , b(2) = [

0.03 0.05 0.07
]′

.

(13)

In figure 1, the plots of log return variances for these two sets
of data are presented, wherein both the associated graphs for
the constrained problem are depicted for three different values
of the correlation threshold δ. Note that the highest curves in
each plot corresponds to the unconstrained optimal portfolio.
All the graphs are plotted for the fixed values of time horizon
T = 5 and confidence level α = 0.05. It is worthwhile to
look at the effect of δ on the variance; higher values of δ lead
to more diversification (lower variance). Extreme situations
may happen: note that for δ = 0.9 in figure 1(a) there is zero
variance, which means pure risk-free investment.

Example 3 In this example, we illustrate how the fraction of in-
vestment on risk-free asset, i.e. π0, is changing as a response to
an increase in market volatility σ11. The findings are presented
for both data-sets of (12) and (13). Since we did not assume any
restriction on borrowing/shortselling, negative values occur in
some instances for optimal proportion of risk-free investment
in both plots in figure 2. Let us note from both graphs that
the bigger δ is, the higher risk-free investment would get (for
δ = 0.9 there is no investment on stocks and all portfolio is
invested in the risk-free asset, which shows the reason why
the log return has zero variance in this case). One should
also observe the pattern of investing more on risk-free asset
in figure 2(a) as a consequence of increase in market volatility,
regardless of δ. However, this observation does not occur in
figure 2(b), because of the structure of a stock correlation
matrix.
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Figure 1. Log return variance.

Figure 2. Risk-free investment fraction.

Figure 3. Variance reduction percentage.

Example 4 In the two previous examples, it is illustrated that
an increase in δ leads to a more diversified portfolio. In this
example, we want to investigate this effect more precisely.
Figure 3 shows the percentage of variance reduction from an
unconstrained log return because of the correlation constraint.
Both graphs show that by increasing δ, the reduction in variance
increases. The dotted line draws the 50% variance reduction,
which intercepts the curves at higher values of δ, as we consider
more volatile cases in the second set of data.

6. Conclusion

In an incomplete market Black–Scholes setting with constant
parameters, the optimal portfolios which minimize the CaR and
achieve a negative prescribed correlation with a given financial
index, are characterized analytically. It is shown that, under a
certain choice of the financial market, the correlation constraint
leads to a more diversified portfolio, that is, the variance of
constrained optimal portfolios is lower than the variance of
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optimal unconstrained portfolios. Moreover, it turns out that
the correlation constraint reduces the variance and increases the
risk-free investment during market declines. Numerical exper-
iments explore the effect on the optimal portfolio composition
induced by the correlation constraint.
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Appendix 1. Proofs

Proof of Proposition 1 The analysis is a two phase procedure: first,
find the optimal portfolio vector on the boundary of the ellipse

∥∥σ ′π
∥∥ = ε, and then find the optimal ellipse parameter ε. Let us

restrict the optimization domain of the minimization problem to the
ellipse boundary,

∥∥σ ′π
∥∥ = ε, and find the optimal portfolio vector

on this set. Thus, in the first step the objective function is:

CaR(π , α, T ) = −b′πT + 1

2
ε2T − zαε

√
T . (A1)

In order to get the minimal CaR value on the boundary of the ellipsoid,
we need to maximize the linear term b′π over this set. From the
Cauchy–Schwarz inequality:

b′π = (σ ′(σσ ′)−1b)′(σ ′π) ≤
∥∥∥σ ′(σσ ′)−1b

∥∥∥ ∥∥σ ′π
∥∥

=
∥∥∥σ ′(σσ ′)−1b

∥∥∥ ε.

The equality is attained when σ ′πε = ε∥∥σ ′(σσ ′)−1b
∥∥σ ′(σσ ′)−1b.

Substituting this choice of portfolio into (A1) leads to:

CaR(π∗
ε , α, T ) = ε2T

2
− εT

(
zα√

T
+
∥∥∥σ ′(σσ ′)−1b

∥∥∥)

= εT

2

[
ε − 2

(
zα√

T
+
∥∥∥σ ′(σσ ′)−1b

∥∥∥)] . (A2)

It is minimized in ε by

ε∗ =
(

zα√
T

+
∥∥∥σ ′(σσ ′)−1b

∥∥∥)+
,

and thus we can derive equations (1) and (2) by substituting ε∗ into
(A2).

Proof of Theorem 1 The objective function(
−b′πT + 1

2

∥∥σ ′π
∥∥2 T − zα

∥∥σ ′π
∥∥√

T

)
is convex because of the assumption zα ≤ 0. The constraint set

δ
∥∥σ ′η

∥∥ ∥∥σ ′π
∥∥+ π ′σσ ′η ≤ 0,

is also a convex set in R
m , being the level set of a convex function.

Now, we can form the Lagrangian of the convex problem:

L(π , λ) = −b′πT + 1

2

∥∥σ ′π
∥∥2 T − zα

∥∥σ ′π
∥∥√

T

+ λ(δ
∥∥σ ′η

∥∥ ∥∥σ ′π
∥∥+ π ′σσ ′η).

The Lagrangian is minimized in a two phase procedure: first find the
optimal π on the boundary of an ellipse; then find the optimal ellipse
parameter.

min
π

L(π , λ) = min
ε≥0

min‖σ ′π‖=ε
L(π , λ)

= min
ε≥0

min‖σ ′π‖=ε

[
− b′πT + 1

2
ε2T − zαε

√
T

+ λ(δ
∥∥σ ′η

∥∥ ε + π ′σσ ′η)

]
. (A3)

In the first step one has to solve:

maximize
[
b′πT − λη′σσ ′π

]
subject to

∥∥σ ′π
∥∥ = ε.

By Cauchy–Schwarz inequality, we have:

b′πT − λη′σσ ′π = (σ ′(σσ ′)−1bT − λσ ′η)′(σ ′π)

≤
∥∥∥σ ′(σσ ′)−1bT − λσ ′η

∥∥∥ ε.

The equality occurs at

σ ′πε = εσ ′∥∥σ ′(σσ ′)−1bT − λσ ′η
∥∥ ((σσ ′)−1bT − λη). (A4)

By substituting (A4) back into the (A3), the second minimization
problem reduces to:

min
ε≥0

[
1

2
ε2T − zαε

√
T + λδε

∥∥σ ′η
∥∥− ε

∥∥∥σ ′(σσ ′)−1bT − λσ ′η
∥∥∥] ,

http://orcid.org
http://orcid.org/0000-0003-4787-0698
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which is solved by

ε∗(λ) = 1

T

(
zα

√
T − λδ

∥∥σ ′η
∥∥+

∥∥∥σ ′(σσ ′)−1bT − λσ ′η
∥∥∥)+

.

(A5)
Then the optimal portfolio satisfies

σ ′π∗ = ε∗(λ∗)σ ′∥∥σ ′(σσ ′)−1bT − λ∗σ ′η
∥∥
(
(σσ ′)−1bT − λ∗η

)
. (A6)

Since the problem is convex, the duality gap between primal and dual
problems is zero. Therefore, from the Slater’s condition (check Boyd
and Vandenberghe (2009)), (λ∗, π∗) has to satisfy

λ∗(δ
∥∥σ ′η

∥∥ ∥∥σ ′π∗∥∥+ π∗′
σσ ′η) = 0. (A7)

Moreover, the inequality constraint of the minimization problem must
hold at (λ∗, π∗):

δ
∥∥σ ′η

∥∥ ∥∥σ ′π∗∥∥+ π∗′
σσ ′η ≤ 0. (A8)

One can readily check that by substituting (A6) into (A7) and (A8),
and using the fact that b′η > 0, the case λ∗ = 0 and π∗ �= 0
never happens. Unless π∗ = 0, the correlation inequality constraint
always binds at π∗, equivalently λ∗ > 0. Thus, to get the non-trivial
optimal primal and dual variables, we continue by taking λ∗ > 0, and
simplifying the equality induced by cancelling λ∗ from both sides of
(A7):

λ∗2 ∥∥σ ′η
∥∥4 − 2λ∗ ∥∥σ ′η

∥∥2 b′ηT + T 2

1 − δ2

×
(

(b′η)2 − δ2 ∥∥σ ′η
∥∥2
∥∥∥σ ′(σσ ′)−1b

∥∥∥2
)

= 0,

which has the positive solution

λ∗ = 1∥∥σ ′η
∥∥2

(
b′ηT + T δ√

1 − δ2

√∥∥σ ′(σσ ′)−1b
∥∥2 ∥∥σ ′η

∥∥2 − (b′η)2

)
.

Substituting λ∗ into (A5) and (A6) completes the proof.

Proof of Proposition 2 The proof follows from theorem 1. Given the
volatility matrix and its inverse in (9), and the prescribed portfolio
vector for the benchmark process, one can readily find:∥∥σ ′η

∥∥ =
∥∥∥σ−1

11 b1

∥∥∥ ,

b′η =
∥∥∥σ−1

11 b1

∥∥∥2
,√∥∥σ ′(σσ ′)−1b

∥∥2 ∥∥σ ′η
∥∥2 − (b′η)2

=
∥∥∥σ−1

11 b1

∥∥∥ ∥∥∥σ−1
22 b2 − σ−1

22 σ21σ−1
11 b1

∥∥∥ .

By plugging these equations into the formulas for σ ′π∗ and λ∗ of
theorem 1, and using the invertibility of volatility matrix, we have
equations (10) and (11).

Proof of Proposition 3 Let us denote by:

θ1 =
∥∥∥σ−1

11 b1

∥∥∥ ,

and
θ2 =

∥∥∥σ−1
22 b2 − σ−1

22 σ21σ−1
11 b1

∥∥∥ .

Direct computations lead to:

Var(log Xπ∗
(T )) = T

[(
zα√

T
+
√

θ2
2 + θ2

1

)+]2

.

Var(log Xπc
∗
(T )) = T

[(
zα√

T
+
√

1 − δ2θ2 − δθ1

)+]2

.

In the light of the following inequality for δ ∈ [0, 1]:√
θ2

2 + θ2
1 ≥

√
1 − δ2θ2 − δθ1,

it follows that

Var(log Xπ∗
(T )) ≥ Var(log Xπ∗

c (T )).
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