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Abstract

I introduce a dynamic model of learning and random meetings between a long-lived

agent with unknown ability and heterogeneous projects with observable qualities. The

outcomes of the agent’s matches with the projects determine her posterior belief about

her ability (i.e., her reputation). In a self-type learning framework with endogenous

outside option, I find the optimal project selection strategy of the agent, that determines

what types of projects the agent with a certain level of reputation will accept. Sections

of the optimal matching set become increasing intervals, with different cutoffs across

different types of the projects. Increasing the meeting rate has asymmetric effects on

the sections of the matching sets: it unambiguously expands the section for the high

type projects, while on some regions, it initially expands and then shrinks the section of

the low type projects.
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1 Introduction

Most of the theoretical literature on experimentation and project choice revolves around

learning the other party’s (namely the project’s) type. In this paper, however, I turn the focus

to learning the self-type, and thus engaging in a self-experimentation setting. Specifically,

the agent in my paper does not know her type, and the only way to learn it is by matching

with the projects and observing their outcomes.

There are natural instances where agents learn their type through the course of their

matches with other parties. For example, firms learn about their productivity while they are

matched with workers. Colleges learn about the quality of their teaching staff while students

are enrolled in their programs. Venture capitalists learn about their ability and the quality of

their post-investment services while investing in the startups. Common in all these cases is

the cost of maintaining the match and the tangible created surplus (such as the high-quality

output of production in the first case, students’ accomplishment in the second case, and the

startups’ success in the last case). These tangible gains can be isomorphically captured by the

choice of the matching function, that takes in the types of partners and returns the output.

However, when the agent holds incomplete information about her type, there is also an

intangible gain due to the learning, that cannot be nested in the former construct. Because,

what is now used as an input to the matching function is no longer the static type of the

agent, but a dynamic state process that reflects the agent’s belief of her own type. Specifically,

in addition to the tangible gains, there are now information gains from agent’s project choices,

as present selections convey information about the agent’s ability, that in turn can be used in

future choices of projects. The basic research question that I pose and address in this paper

is as follows: When confronted with diverse projects that vary in their expected payoffs, what

constitutes the agent’s optimal project selection policy in relation to her reputation?

In this economy, the agent is ex ante endowed with a high or low immutable type

θ P tL,Hu, that is hidden to herself. On the other hand, there are heterogeneous projects

with observable qualities denoted by q P ta, bu, which I often refer to them by a-projects and

b-projects. The agent randomly meets the projects subject to the search frictions and decide

to accept them or not. Once a project is accepted, there will be a random success event

whose arrival intensity depends on the types of the agent and the project (namely on θ and

q). The agent continuously updates her belief about the underlying type during the course of

her matches. Therefore, I interpret the posterior belief as her reputation and denote it by π.

Whenever the agent pairs up with a project, a learning opportunity is created about her
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type. Since maintaining the match is costly, the agent effectively solves a stopping time

problem, in which she weighs the matching value function vqpπq (that is a function of her

current reputation π and the type of the project q) against the reservation value wpπq — the

value of holding the current reputation while being unmatched, that is called the reputation

value function throughout the paper. Because of the random meetings framework, these

two functions are intertwined in the fixed-point. That is the reputation function is simply

the expected discounted value of future surpluses that the agent extracts, and the matching

value function is the solution to the free boundary problem with the exit option of w. The

continuation region of this free boundary problem determines the optimal matching set M,

that in turn defines the acceptable levels of reputation with which the agent selects and

holds on to a particular project. Specifically, pq, πq P M if vqpπq ą wpπq. In light of this

specification and following the terminology of the optimal stopping literature, I use the

matching set and continuation region interchangeably and both refer to the subset M.

The central innovation of this paper is to study the optimality and shape of these matching

sets (namely the continuation regions) when the agent has long-run incentives and learn

her ability as she selects and matches with the projects. Specifically, I find and study the

properties of the optimal tuple xw˚, v˚,M˚y. The main point of the departure from the

experimentation literature (e.g., Keller et al. (2005)) is the endogeneity of the outside option

w, that determines the types of acceptable projects in the agent’s optimal policy. In addition,

the subject of learning in the experimentation literature is the project’s type, whereas in my

paper the learning is about the self-type and the projects provide the context for learning

and a source of creating surplus.

1.1 Organization of Results

In Section 2, I introduce the dynamic learning and project selection model. Three main

objects in the study of agent’s optimal policy are the matching value function vqpπq, the

reputation or reservation value function wpπq, and the matching set M. We will see how the

agent’s optimal policy can be translated into a fixed-point solution of a system that connects

the three elements mentioned above.

In Section 3, I find the unique optimal tuple xw˚, v˚,M˚y in the space of continuously

differentiable value functions, i.e., C1r0, 1s. I study the properties of the value functions

(such as monotonicity and convexity), and show the sections of the optimal matching set are

increasing intervals, and hence the agent’s optimal policy is to stay matched with a project so
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long as her reputation is larger than a certain threshold. The threshold for high type projects

is lower, and hence the agent shows more tolerance for failure when matched to the high

types. In particular, by letting Mq̊ indicate the interval of reputation levels at which the

agent remains matched with a q-project, it follows that at the optimum Må Ď Mb̊ . Due to

the search frictions, there is a cost region that Må ‰ H, and thus even the low type projects

get selected.

I present the qualitative features of the matching sets and the value functions in Section 4.

In particular, to uncover the unique role of learning on the shape of the optimal matching sets

and value functions, I study the no-learning counterpart of the original model in Section 4.1.

Specifically, I let the agent’s true type to be equal to her reputation (i.e., a number π P r0, 1s),
as opposed to a background hidden binary variable θ P tL,Hu. This will shut down the

learning channel, that is the Bayesian learning force will be absent in the associated Bellman

equations.

Subsequently, in this no-learning environment, I find the unique optimal outcome xŵ, v̂, xMy
in the space of continuous functions Cr0, 1s. The matching value function v̂ is locally concave

with kinks on the boundaries. Namely, it is no longer convex and continuously differentiable

despite its counterpart v˚ in the original learning model. Losing convexity in the value

functions (due to the absence of learning incentives) leaves the matching sets smaller than

their learning counterpart M˚. Lastly, I show in this setting that lowering the search frictions

symmetrically expands both sections of the matching set (i.e., xMa and xMb).

Next, in Section 4.2, I present the comparative statics of the original learning model.

Specifically, based on the unique existence of the optimal tuple xw˚, v˚,M˚y in the space of

C1 functions, I present the comparative statics of this tuple with respect to the primitives of

the economy. An important one among them is the impact of the search frictions on the size

of the sections of the optimal matching set, namely Må and Mb̊ . I show that decreasing

the search frictions unambiguously expands the high type section Mb̊ , but on some regions,

initially expands and then shrinks the low type section Må. This asymmetric response to

search frictions was not present in the no-learning matching sets p xMa, xMbq.
Expanding upon the baseline results with a single agent, in Section 5 I study an economy

that exhibits reputational externality and is populated by a continuum of agents. Specifically,

by employing a reputation weight function, the meeting rate of each agent becomes higher as

her reputation increases. More importantly, this rate is inversely influenced by the steady-

state distribution of reputation weights across the population. Hence the more reputable
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agents slow down the meeting rate of the less reputable ones. As a result of this externality,

I demonstrate that a marginal reduction in the symmetric equilibrium termination point

increases the social surplus. Consequently, the equilibrium social surplus suffers from agents

under-learning their self-types and early termination of the projects.

Lastly, the paper concludes in Section 6.

1.2 Related Literature

The Bayesian learning force in the agent’s decision problem in this paper is based on

the exponential arrival of breakthroughs, and in that sense the paper is related to the

experimentation literature with exponential news processes, initiated by Keller et al. (2005),

and expanded in the follow-up works of Keller and Rady (2010) and Keller and Rady (2015).

The exponential Bandit approach has also been applied to other strategic settings with payoff

and informational externalities between players (Margaria, 2020; Das et al., 2020; Boyarchenko,

2021). The common theme in this line of research revolves around the uncertainty of the

project’s type for the decision maker(s). In contrast, in the present paper, the projects’ types

are observable and they provide a context for the decision maker to learn her own type while

they are being selected.

In the context of reputation building (when the information about the persistent or

dynamic self-type is incomplete) and interpreting the reputation as the posterior belief, this

paper is related to Holmström (1999); Board and Meyer-ter-Vehn (2013); Bonatti and Hörner

(2017). However the kind of economic engagement that releases informative signals in these

papers is the agent’s effort, and in the current study is about the agent’s project selection.

The analysis of this paper has also the flavor of the literature on learning within labor

markets such as the works by Jovanovic (1979); Moscarini (2005); Li and Weng (2017). Aside

from differences in the context and motivation, the subject of learning in these studies is

the match-specific parameter, and not the underlying types of the agents. Therefore, the

information released over the present match has no bearing on the future matches and

naturally the reputational aspects are absent.

There is also previous research on how agents hold perfect private information about

themselves, and receive some form of information about the type of their partner before the

match (Chakraborty et al., 2010; Liu et al., 2014). My setting is different from these works,

mainly in the sense that the agent in this paper has incomplete information about herself,

and one of the motives in her matching decisions (besides receiving the tangible surplus from
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the projects she accepts) is learning her type.

My findings also contribute to the literature about Bandits with correlated arms (Camargo,

2007; Rosenberg et al., 2013). This problem is known to be difficult, and thus very little has

been achieved in economics literature. The self-experimentation model that is developed in

this paper is formally equivalent to a two-armed Bandit setting, where the arms’ payoffs are

correlated. Specifically, what correlates the payoffs of the projects is the single dimensional

variable that represents the agent’s hidden type.

2 Model

2.1 Agent, Projects and Dynamic Timeline

In this part, I describe the elements of an economy populated by a single long-lived agent

and a continuum of projects.

Agent. The agent is a long-lived individual with the rate of time preference r ą 0. She

holds incomplete information about her immutable type θ P tL,Hu. The σ-field It aggregates

all the information that is available in the economy at time t P R`. The agent cares about

her reputation, which is the posterior belief about her type. Given the filtration I “ tItu,
πt “ P pθ “ H| Itq reflects her time-t reputation.

Projects. The entities on the other side of this economy are treated as projects that are

selected by the agent. Specifically, they have no bargaining power against the agent.1 Each

project is endowed with a type q P ta, bu, which is publicly observable. The (unnormalized)

mass of type-q projects is φq for q P ta, bu, exogenously replenished and held constant.

Meetings and project selection. The agent randomly meets the projects subject to the

search frictions, with the meeting rate of κ ą 0, and the matching technology is quadratic.

That is the probability with which the agent meets a type-q project over an infinitesimal

period dt is approximately equal to κφq dt. Furthermore, the matches are one-to-one, that is

both parties have capacity constraint over the number of partners they can accept.
1This assumption makes the analysis substantially simpler, yet it downplays the strategic role of “project

owners” in the optimal outcome. However, given the paper’s focus on the agent’s side and her reputational
concerns, such an abstraction seems plausible.
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Output and reputation. Given the selection of a type-q project by the type-θ agent,

the success arrives at the rate of λq, if θ “ H. Otherwise, there will be no success. This

means breakthroughs are conclusive about the agent’s ability.2 Type-b projects are superior

to type-a, in the sense that λb ą λa. The agent has to cover the flow cost of c ą 0 that is

common across all projects — and, for a non-trivial setting, one has to assume c ă λa ă λb.

In return, she receives the right to terminate the project at her will, so conceptually a stopping

time problem is solved by the agent ex post to every selection of a project. The flow cost c

captures both the running cost of the project and learning about the self-type θ. I assume

there is a mechanism in the economy that tracks the output of each project and records the

Bayes-updated posterior of the agent. This information is reflected in the filtration I “ tItu.
The posterior dynamics for the reputation process (resulted from the Bayes law) follows

dπt “
#

´πtp1 ´ πtqλq dt before the breakthrough ,

0 after the breakthrough .
(2.1)

Since the breakthroughs are conclusive, when the success arrives, πt promptly jumps up to

one and remains there indefinitely.

Figure 1 illustrates the dynamic timeline for the agent, who starts the cycle with reputation

π, and after some exponentially distributed time meets a project randomly drawn from the

population of available ones. A decision to accept or reject the contacting project is made by

the agent. Upon rejection, she returns to the initial node, and conditioned on acceptance an

investment problem with the flow cost of c is solved.

Finally, I interpret success as an event where the breakthrough arrives before the agent

stops the project, leading to rationally updating her belief upwards. And the failure refers

to the outcome, where the project is terminated before the success arrives, thus the agent

returns to the unmatched status with a lower reputation. Importantly, after a success or a

failure, the match is dissolved and both the agent and the project become available.

The self-experimentation model presented here is formally equivalent to a special two-

armed Bandit setting, in which the payoffs to the two arms are correlated. Specifically, the

agent’s type θ is the variable that correlates the payoffs of the two arms. Therefore, the
2The analysis involving inconclusive breakthroughs, where success can occur even with a low-type agent,

presents several intractable steps and is therefore excluded. Due to its tractability, conclusive breakthroughs
are used in a number of recent studies (Bonatti and Hörner, 2017; Margaria, 2020; Das et al., 2020; Boyarchenko,
2021). Also, opting for exponential processes to model breakthroughs is more fitting when news arrives at
discrete and randomly spaced intervals, in contrast to the Wiener process approach for experimentation (e.g.,
see Bolton and Harris, 1999; Pourbabaee, 2020).
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upcoming analysis can also be read through the lens of the experimentation literature with

correlated arms.

reputation = π
meet

q-project
„ exp. time

reject

flow cost=c,
solve stopping

time prob.

accept
success

failure

π Ò 1

π Ó

Figure 1: Decision timeline for the agent

2.2 Value Functions and Matching Sets

In this section, I show that the agent’s optimal strategy can be encapsulated by the choice

of the matching sets. Additionally, I present the necessary Bellman equations that every

optimal C1 value function, associated with the optimal matching sets, must satisfy.

Let wpπq be the optimal value of holding reputation π, when the agent is unmatched. This

function shall be treated as the agent’s outside option and is weighed against the optimal

matching value function upon the meetings.3 The matching value function when the agent

with reputation π selects and stays with a type-q project is vqpπq, that is the expected value

of discounted future payoffs generated by this project.

The optimality of the match between the agent of reputation π and a type-q project

requires that vqpπq ą wpπq, in that case I say pq, πq P M Ď ta, bu ˆ r0, 1s, where M is

called the matching set (or interchangeably the continuation region). Also, understood from

the context, Mpπq (respectively, Mq) refers to the π (respectively, q) section of this two

dimensional set. In addition, often in the paper I use the indicator function χqpπq to denote

whether the agent with reputation π accepts a type-q project, that is whether pq, πq P M or

not.

3Henceforth, I often drop the word “optimal”, as it is clear from the context.
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Recall that φ denotes the mass of available projects in the economy (that are treated

exogenously as the primitives of the model). The agent also meets type-q projects at the

rate of κφq. If a q-project is acceptable, it leads to a surplus of vqpπq ´ wpπq for the agent.

Hence, the following Bellman equation falls out:4

rwpπq “ κ
ÿ

qPMpπq
φq

`

vqpπq ´ wpπq˘. (2.2)

Next, I formally define the optimal matching value function, vqpπq, and present the

necessary Bellman equation that it satisfies.

Imagine a match between the agent with an initial reputation of π and a type-q project.

Let σq represent the random exponential time of success with the unit payoff and the arrival

intensity of λq if θ “ H. Therefore, the matching value function vqp¨q is an endogenous

outcome of a free boundary problem with the outside option of wp¨q. In that, the agent

selects an optimal stopping time τ , upon which she stops backing the project, taking into

account the project’s success payoff and her reputation value w:5

vqpπq “ sup
τ

"

E

„

e´rσq ´ c

ż σq

0

e´rsds ` e´rσqwpπσqq;σq ď τ

ȷ

` E

„

´c
ż τ

0

e´rsds ` e´rτwpπτ q;σq ą τ

ȷ*

.

(2.3)

Specifically, τ is adapted to the filtration I. Namely, tτ ď tu is tπs : s ă tu-measurable for

every t P R`.

Formally, in the above stopping time problem, if the success happens before the agent

stops backing the project (namely when σq ď τ), the agent collects the discounted unit payoff,

has paid the flow cost until time σq, and successfully leaves the project with the updated

reputation function wpπσqq. Observe that πσq is the updated posterior belief reflecting the

successful exit, hence πσq “ 1.

On the other hand, if the agent stops the project before the success realization (namely

when τ ă σq), then she has just paid the flow cost up until time τ , and leaves with the

updated reputation function wpπτ q — reflecting the fact that the success has not happened

until time τ . Therefore, the exit option at the stopping time τ is the agent’s reservation value
4The reader can refer to Appendix A.1 for a heuristic derivation of the Bellman equations (2.2) and (2.4).
5Henceforth, for a random variable X and an event A, I use the convention that ErX;As :“ ErX1As,

where 1A is the indicator function of the event A.
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of holding reputation πτ , i.e., wpπτ q.
Because of the dynamic programming principle, any C1 value function of the above

stopping time problem must satisfy the following HJB equation:

rvqpπq “ max
!

rwpπq,´c ` λqπ
`

1 ` wp1q ´ vqpπq˘ ´ λqπp1 ´ πqv1
qpπq

)

. (2.4)

The above HJB is presented in the variational form, that is the first expression in the rhs is

the value of stopping — denying the project and holding on to the outside option w — and

the second expression represents the Bellman equation over the continuation region Mq, on

which vqpπq ą wpπq.
The first term in the Bellman equation is the flow cost of the project borne by the agent,

the second term is the expected flow of the created surplus, and the last term captures the

marginal reputation loss due to the lack of success. At π “ 1, where there is no learning

about the self-type, that final term is absent and the above Bellman equation reduces to:

rvqp1q “ max
!

rwp1q,´c ` λq
`

1 ` wp1q ´ vqp1q˘
)

. (2.5)

Induced by the above stopping time problem, the matching set M can thus be interpreted

as the continuation region for the free boundary problem of (2.4), namely

M “ tpq, πq P ta, bu ˆ r0, 1s : vqpπq ą wpπqu , (2.6)

and on the stopping region Mc (namely the complement of M), the matching value function

equals the agent’s reputation function, i.e., vqpπq “ wpπq.
The overarching goal of this paper is to study the optimal outcome, which is the solution to

the following fixed-point problem: the tuple xw, v,My constitutes an optimal outcome, if (i)

given v and M, the reputation value function w satisfies (2.2) and (ii) given w, the matching

value function v combined with the matching set M together solve the free boundary system

of (2.3) and (2.6). I seek to find the C1 optimal value functions.

The two-way feedback between the reputation function w and the matching variables

xv,My are plotted in Figure 2. The link connecting w to the xv,My block is upheld by

the stopping time problem (2.3). The opposite link from the matching variables block to

w is supported by the Bellman equation for the reputation function in (2.2). The optimal

outcome is formally the fixed-point to the endogenous loops of this figure.
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xwy xv,My

Figure 2: Endogenous feedback

I should emphasize that in the optimal stopping time literature the exit option is usually

exogenously set, and thus finding the optimal strategy only requires solving the free boundary

problem. The main stretch in our setting is that the exit option itself is endogenously

determined by the value function associated with the stopping time problem, and this

complicates the solution method.

3 Optimum as the Fixed-Point

In the previous section, the optimal outcome was expressed as the fixed-point to the system

of necessary conditions (2.2), (2.3) and (2.6).

Below in Section 3.1, I appeal to the fact that any C1 solution to the stopping time

problem of (2.3) satisfies the Bellman equation (2.4). Additionally, it satisfies two other

conditions known as the majorant and superharmonic properties. Hence, I initiate the search

for the optimal tuple in the larger space of C1 functions that satisfy the aforementioned two

properties, as well as the system of conditions (2.2), (2.4) and (2.6).

Subsequently, in Section 3.2, I show the predicted outcome (determined by the above

necessary conditions and denoted by xw˚, v˚,M˚y) is unique. Then, I show this unique tuple

is indeed the optimal outcome, that is replacing (2.3) with (2.4) was innocuous, and the pair

xv˚,M˚y solves the stopping time problem in (2.3) given w˚.

3.1 Necessary Conditions

In this section, I first show the monotonicity of the matching value functions in q. That

is to prove for any solution v to the stopping time problem (2.3), one has vbpπq ě vapπq
for all π. Second, I highlight two additional necessary conditions, called the majorant and

superharmonic properties, that the optimal value functions must satisfy.6

6These two conditions are standard in the literature of optimal stopping and can be found in Chapter 2 of
Peskir and Shiryaev (2006).

12



Proposition 1 (Monotonicity). Optimal matching value functions must satisfy vbpπq ě vapπq
for all π.

Proof sketch. Since λb ą λa, for every initial π the success arrives faster with a b-project.

This means when deciding to match with a b-project, the agent can mimic the matching

strategy of an a-type, and guarantees herself a payoff of at least vapπq. The proof is actually

more subtle and is presented in the appendix.

Corollary 1. At the optimum Ma Ď Mb and wpπq “ 0 if and only if vbpπq “ 0.

Proof. The justification for Ma Ď Mb is that π P Ma implies vapπq ą wpπq. Since vbpπq ě
vapπq, then vbpπq ą wpπq, and hence π P Mb. In regard to the second claim, note that by

equation (2.2), at the optimum w is a linear combination of va and vb (with possibly zero

weights). Since vb ě va and both are non-negative, the second claim follows.

Corollary 2. At the optimum, 1 P Ma if and only if

λa ´ c ą κφbpλb ´ cq
r ` κφb ` λb

. (3.1)

The proof follows from the previous corollary and equation (2.5). We say that the economy

is in the low cost regime if the above inequality holds, and otherwise is in the high cost

regime. In particular, it says at π “ 1 — where the learning channel is absent — selecting an

a-project is optimal if its payoff exceeds the opportunity cost, that is induced by waiting for

a superior b-project.

One important analogy of this derivation with labor markets is that increasing the search

frictions, e.g., by reducing κ here, lowers the opportunity cost of hiring low skilled individuals,

and thus increases their chances of selection by reputation seeking employers.

Remark 1. It is noteworthy to mention that wp1q itself is an endogenous object, that takes

different forms depending on the cost regime. Its values in the high and low cost regimes

are respectively expressed in equations (A.3) and (A.4) of the appendix — in the proof of

Corollary 2. To avoid introducing extra notation, I will henceforth use wp1q to refer to both

of these expressions, considering that the cost regime is clear from the context.

Turning to the second group of necessary conditions, the dynamics of the reputation

process can be compactly represented by

dπt “ p1 ´ πt´q pdιt ´ λqπt´dtq ,
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where ι is the success indicator process, that is ιt :“ 1ttěσu. The infinitesimal generator

associated with this stochastic process is Lq : C1r0, 1s Ñ Cr0, 1s, where for a generic

u P C1r0, 1s:7
rLqus pπq “ λqπ

`

1 ` wp1q ´ upπq˘ ´ λqπp1 ´ πqu1pπq.

For every candidate fixed-point tuple xw, v,My in the space of C1 functions, that satisfy the

system (2.2), (2.3) and (2.6) the following two conditions must hold for the optimal v and w

at all π P r0, 1s and q P ta, bu:

(i) Majorant property : vqpπq ě wpπq.

(ii) Superharmonic property : rLqvqspπq ´ rvqpπq ´ c ď 0.

The first condition simply means that in every match the agent has the option to terminate the

project, thereby enjoying her reputation value w. The second condition means on expectation

a typical agent loses if she decides to keep the match on the stopping region.

Usually in the “one dimensional” experimentation settings, meaning where the continuation

region is one dimensional, the agent follows threshold strategy and thus the continuation

region is naturally a connected subset. However, in the current setting, where the matching

set is “two-dimensional”, consisting of two sections Ma and Mb, one may expect a situation

in which one of these subsets contains two disjoint intervals, and hence not be connected. In

the next three results, using Proposition 1 and the above two conditions, I will rule out this

possibility, and show that both sections of the matching set are connected intervals.

Lemma 1 (Lowest boundary point). Let β :“ infMb, that is the lowest boundary point of

the high type section of the optimal matching set. Then,

β “ c

λb
`

1 ` wp1q˘ . (3.2)

Proof. Since the value functions are continuous, Mb is an open subset, and hence β R Mb.

Corollary 1 implies that wpπq “ 0 for all π ď β. This means the matching value function vb
must smoothly meet the zero function at β, i.e., vbpβq “ v1

bpβq “ 0. Substituting this into

the Bellman equation (2.4) results in (3.2).

The next lemma shows that at the optimum, Mb is an increasing interval. That is if

π P Mb, then π1 P Mb for all π1 ą π. To show this claim, suppose to the contrary that
7Space of continuously differentiable functions on p0, 1q with continuous extension to the boundary t0, 1u.
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Dπ1 ą π such that π1 R Mb. Then, Corollary 1 implies tha vbpπ1q “ 0, whereas vbpπq ą 0

because π P Mb. This combination will be ruled out in the next lemma, thus proving that

Mb is an increasing interval.

Lemma 2 (Single crossing). Let vb be the optimal matching value function in C1. If vbpπq ą 0,

then vbpπ1q ą 0 for all π1 ą π.

Proof. Assume there exists π1 ą π such that vbpπ1q “ 0. Since π P Mb, then clearly

β ă π ă π1. Also, since vb ě 0, then π1 is a global minimum and thus v1
bpπ1q “ 0. Because of

superharmonic property at π1, one has

0 ě Lbvbpπ1q ´ rvbpπ1q “ λbπ
1`1 ` wp1q˘ ´ c ,

where the equality holds because vbpπ1q “ v1
bpπ1q “ 0. This in turn implies that π1 ď

c{λb
`

1 ` wp1q˘ “ β, which is a contradiction.

As previously argued, the above lemma shows that at the optimum Mb is the increasing

interval pβ, 1s, and hence is unique. This in turn leaves only one candidate for the optimal

vb, that satisfies the Bellman equation (2.4) on the continuation region pβ, 1s. A particular

solution for this differential equation is

´c

r
` λb
r ` λb

´

1 ` wp1q ` c

r

¯

π ,

and the homogenous solution is p1 ´ πq1`r{λb π´r{λb . Since vbpβq “ v1
bpβq “ 0, the only

candidate for the optimal vb is

v˚
b pπq “ ´c

r
` λb
r ` λb

´

1 ` wp1q ` c

r

¯

π

`
ˆ

c

r
´ λb
r ` λb

´

1 ` wp1q ` c

r

¯

β

˙ˆ

1 ´ π

1 ´ β

˙1`r{λb
ˆ

π

β

˙´r{λb

.

(3.3)

Exploiting the above characterization as the only viable candidate for the optimal vb (in any

C1 fixed-point outcome) and the fact that Ma Ď Mb, I prove in the following proposition

that Ma is also an increasing interval — especially, it means Ma cannot have disjoint subsets.

Its proof includes multiple steps, thus is relegated to the appendix.

Proposition 2 (Optimal Ma). In the low cost regime, optimal Ma is an increasing interval,

i.e., Ma “ pα, 1s for some α ě β. And in the high cost regime Ma “ H.
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This proposition implies that in the high cost regime vå “ κφb

r`κφb
vb̊ , and Må “ H. In the

low cost regime, however, Må “ pα, 1s and

v˚
apπq “ ´c

r
` λa
r ` λa

´

1 ` wp1q ` c

r

¯

π ` γ

ˆ

1 ´ π

1 ´ α

˙1`r{λa ´π

α

¯´r{λa

, (3.4)

in that the coefficient γ and the lower boundary point α are determined by the following

boundary conditions:

v˚
apαq “ κφb

r ` κφb

v˚
b pαq and v˚1

a pαq “ κφb

r ` κφb

v˚1

b pαq . (3.5)

3.2 Uniqueness and Martingale Verification

The characterizations in the previous section essentially offered a unique tuple as the only

viable candidate satisfying (2.2), (2.4), and (2.6) as well as the majorant and superharmonic

conditions. In the first theorem below, I summarize the properties of this tuple.

Theorem 1 (Uniqueness). The following profile expresses the unique C1 value functions and

the matching sets, that satisfy the fixed-point conditions (2.2), (2.4), and (2.6) as well as the

majorant and superharmonic properties:

(i) In each cost regime Mb̊ “ pβ, 1s, where β is determined by Lemma 1. Additionally, vb̊
follows (3.3).

(ii) In the high cost regime Må “ H and vå “ κφb

r`κφb
vb̊ . In the low cost regime Må “ pα, 1s,

where α is determined by (3.5), and vå follows (3.4).

All the claims in this theorem, except a complete verification of the superharmonic

property (especially outside of the continuation region), were justified in the previous section.

Therefore, it only remains to establish the superharmonic property in the appendix.

The next step is to demonstrate that the unique tuple expressed in the previous theorem

does indeed correspond to the best response of the agent. Formally, one needs to prove that

given w˚, the pair xv˚,M˚y describe the optimal value function and the optimal continuation

region for the stopping time problem of (2.3). In the next theorem, I will apply a Martingale

verification procedure to show this step.

Theorem 2 (Unique optimum). xw˚, v˚,M˚y is the unique optimal tuple in the space of C1

value functions, satisfying conditions (2.2), (2.3), and (2.6).
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Figure 3 plots the optimal value functions in the low cost regime. In particular, it

demonstrates the convexity of the value functions, and shows that at the the optimum α ą β.

Relatedly, Figure 4 plots the optimal matching sets M˚ in each cost regime. As explained

before, at the optimum Må Ď Mb̊ , and in the high cost regime Må “ H. In light of

Må Ď Mb̊ , the model offers the testable prediction that the agents who exit the economy

and do not engage in further activities made their last few engagements in the high-growth

projects (i.e., b-types).8

The agent follows cutoff strategy with respect to each type of the projects, and in

particular, she shows more tolerance for failure when matched to the high type projects. The

threshold strategy (equivalently, that the matching sets are increasing intervals) advances the

idea that agents with higher reputation have higher tolerance for failure. In other words, the

distance to the endogenous separation point (α or β) is larger for a more reputable agent

than a less reputable one. This observation is in line with the learning theory in economics of

venture capital. Specifically, Gompers and Lerner (1999) argue that VCs learn about their

post-investment ability while they are funding startups, and the more reputable ones have

higher tolerance for failure, namely they spend longer time funding their portfolio companies.

0 αβ 1
0 π

vb̊ pπq
våpπq
w˚pπq

Figure 3: Value functions in the low cost regime

Specifically, it was shown in Lemma 1 that the endogenous termination point β is inversely

related to wp1q, where wp1q is the value of holding the maximum reputation, namely at

π “ 1, in each cost regime. In the high cost regime wp1q only depends on the b-parameters,
8This prediction is in line with the observation that historically the politicians who lose big races for high

office elections, become backbencher for a while. I acknowledge the anonymous referee for suggesting this
anecdotal evidence.

17



0

1

project
type

π

arφas brφbs

βHC

(a) high cost regime

0

1

project
type

π

arφas brφbs

αLC

βLC

(b) low cost regime

Figure 4: Optimal matching sets

because Må “ H, whereas in the low cost regime it takes the a-related parameters into

account as well (see Remark 1). Additionally, equation (3.2) shows that it is indeed through

the reputation channel (i.e., wp1q) that learning incentives manifest themselves in the agent’s

selection policy. Specifically, any exogenous parameter of the economy can influence wp1q,
thereby impacting the size of the continuation set.

In the next section, I compare the current learning model with its no-learning version,

and perform comparative statics with respect to the underlying primitives, in particular the

meeting rate (or inversely, the search frictions).

4 Qualitative Comparisons

In Section 4.1 below, I illustrate how the shape of the matching sets and value functions

change in an economy, where the agent has complete information about her type, but is

otherwise the same as before. This exercise reveals the distinct impact of learning and

incomplete information on the agent’s optimal selection strategy.

Subsequently, in Section 4.2, I perform the comparative statics of the optimal matching

sets (in the original learning model) with respect to the primitives of the economy.

4.1 No-Learning Version

In contrast with our original model, where the agent’s underlying type was the hidden binary

variable θ P tL,Hu, and π reflected the posterior belief, here I assume the actual underlying
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type is π P r0, 1s, and it stays constant over time. Specifically, when a type-π agent selects

a type-q project, the success arrives with the rate of λqπ. The underlying reason behind

studying this benchmark case is to understand how the learning process impacts the optimal

matching sets.

The major changes happen in the Bellman equation for the matching value function.

First, the Bayesian learning component that includes the π-derivative of vqpπq is no longer

present. Second, the exit option at the time of success is 1 ` wpπq instead of 1 ` wp1q. This

is due to the fact that the agent’s type is persistent and she leaves the match with the same

reputation that she entered. Formally, the no-learning Bellman equation for the matching

value function is:

rvqpπq “ max
␣

rwpπq,´c ` λqπ
`

1 ` wpπq ´ vqpπq˘( . (4.1)

The expressions behind the reputation function w and M remain the same as in (2.2)

and (2.6), respectively.

Proposition 3 (Unique optimum, absent learning). There exists a unique optimal tuple

xŵ, v̂,xMy, in the space of continuous value functions, that satisfy the optimality condi-

tions (2.2), (4.1), and (2.6). Furthermore,

(i) in both cost regimes the matching sets are increasing intervals and xMa Ď xMb.

(ii) In the high cost regime xMa “ H.

The lower boundary of optimal matching sets (in the proof of Proposition 3) are denoted

by α̂ “ inf xMa, and β̂ “ inf xMb. It is shown in the appendix that β̂ “ c{λb and α̂ follows

equation (A.16).

Comparing v̂ with v˚: The optimal matching value functions in the current no-learning

environment (and in the low cost regime) are plotted in Figure 5. There are two important

differences with Figure 3: local concavity and kinks on the boundary of matching sets. In

contrast, the value functions in the learning environment were convex and smooth. Both of

these properties were due to the Bayesian learning, that are absent here. Specifically, the

marginal value of acquiring information about the self-type becomes larger as the posterior

belief increases, and this aspect is only present when the learning opportunity is available.

Analytically, the final term in (3.3), which is induced by the Bayesian learning component in

the Bellman equation, delivers the convexity of the value functions.
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Figure 5: Value functions in the low cost regime (no-learning version)

Comparing β̂ with β: It is shown in the proof of Proposition 3 that β̂ “ c{λb. Comparing

this with equation (3.2) for β, one notices an important difference: learning incentives affect β

through the impact of wp1q in its denominator. Specifically, increasing κ, φa, φb, or decreasing

r each strengthens the reputational motives and raises wp1q, thereby making the agent more

patient (by lowering β). In the absence of learning, all of these effects are muted in β̂. Hence,

in both cost regimes, the separation point β is smaller than its no-learning counterpart

β̂ “ c{λb. Therefore, the prospects of learning about the self-type and possibly reaching a

higher reputation expand the matching sets and add more patience to the agent’s continuation

region. I refer to this force by learning effect in the next section.

Response of α̂ to κ: Differentiating the expression for α̂ in equation (A.16) (of the

appendix) with respect to κ implies that dα̂{dκ ą 0, therefore decreasing the search frictions

shrinks xMa. Hypothetically, in a frictionless world (where κ Ñ 8) the agent never selects

the a-projects, because by equation (3.1) its opportunity cost (λb ´ c) exceeds its payoff

(λa ´ c). In reality however, search frictions create an endogenous wedge, by lowering the

previous opportunity cost, and partially tilt the incentives toward the inferior a-projects. I

refer to this force by opportunity cost effect in the next section. This has the same frictional

spirit, by which the low-skilled individuals are selected by the employers in the labor market.

Hence, it is exactly in this sense that increasing the search frictions (by lowering the meeting

rate κ) expands xMa. Through an example in the next section, I show that this monotone

response is overturned in the original learning model of Section 3 — due to the opposing

force created by the learning effect.
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4.2 Comparative Statics

The results of this section pertains to the original model with learning. Observe that in both

cost regimes Må Ď Mb̊ , and thus I take β as a proxy for the size of the union of matching

sets, i.e., Må Y Mb̊ . It is important to know the comparative statics of β (in (3.2)) with

respect to the primitives of the economy.

Performing simple differentiation of (3.2), one can verify that dβ
dc

ą 0, dβ
dr

ą 0, and dβ
dκ

ă 0.

Namely, lower levels of flow cost, time discount rate, and search frictions (equivalently higher

meeting rate) are all associated with larger Mb̊ . Specifically, raising the meeting rate κ

increases the value of holding the maximum reputation wp1q — because the agent meets the

projects more frequently — and this expands the optimal Mb̊ . Hence, with regard to the

influence of κ on β, only the learning effect comes into play. The opportunity cost effect has

no impact on Mb̊ , as there is no better alternative than b-projects. Lastly, increasing φa or

φb raises wp1q and thus decreases β (that is similar to the effect of meeting rate κ on β).

In the following example, I study how the optimal α (i.e., the lower boundary of Må)

reacts non-monotonically to the search frictions. This stands in contrast to the monotonic

response of α̂ to κ in the no-learning version discussed earlier.

Example 1 (Non-monotone response of α to κ.). In this example, I show — in the low cost

regime where Må “ pα, 1s ‰ H — there exists a range of parameters, in which the optimal

α reacts non-monotonically to κ. This is in contrast with the response of its no-learning

counterpart α̂ to κ, that was shown to be unambiguously increasing due to the opportunity

cost effect.

First, I explain how one can mathematically pin down the fixed-point α, and then I argue

(based on the properties of the fixed-point mapping) why the response is not monotone.

Observe that in the low cost regime, α is the point at which vå smoothly meets the reservation

value w˚. By the specification in Theorem 1, α P M˚c
a X Mb̊ , and one has

v˚
apπq “ w˚pπq “ κφb

r ` κφb

v˚
b pπq , @π ď α .

Therefore, the boundary conditions in (3.5) apply. Using these conditions and the Bellman

equations for vå and vb̊ , one arrives at the following relation, whose fixed-point determines

the optimal α:

α “ rλbc ` κφb

`

λb ´ λa
˘`

c ` rvb̊ pαq˘

rλbλa
`

1 ` wp1q˘ . (4.2)
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Subsequently, I plugged in the closed-form expression for vb̊ from (3.3) into the above relation.

By varying κ, I found the fixed-point α (as a function of κ) in a numerical example whose

output is plotted in Figure 6. As it appears the response is U-shaped: for small values of κ,

the optimal α is decreasing, while for larger κ, it becomes increasing. One should contrast

this outcome with the no-learning counterpart, in which dα̂
dκ

ą 0, and with the lower boundary

of Mb̊ , where dβ
dκ

ă 0.

The algebraic reason behind the U-shaped response of α to κ is that both the numerator

and the denominator of the fixed-point map (4.2) are increasing in κ, therefore, the overall

response is ambiguous. Intuitively however, the ratio in (4.2) highlights two opposing forces,

underlying the non-monotone behavior: learning effect and opportunity cost effect. First and

similar to the case for Mb̊ , raising κ increases the value of holding the maximum reputation

wp1q, encouraging the agent to stay longer with the project. This learning effect manifests

itself in the denominator of (4.2), and sets an expanding force on Må. Second and similar to

the case for xMa, higher κ raises the opportunity cost of choosing an a-project, thus shrinking

the optimal Må. This effect is playing out in the numerator of (4.2). As it appears in the

example plotted in Figure 6, the learning effect dominates for small levels of the meeting rate,

while as κ increases, it is the opportunity cost effect that prevails and causes Må to shrink.

κ

α

Figure 6: Response of the optimal Må to κ

Remark 2. Even though the above observation on the non-monotone response was stated

as an example, but by continuity it holds for an open region. A formal argument establishing

this non-monotonicity is out of reach. First, because the fixed-point mapping in (4.2) is not

monotone in the parameter κ, the monotone comparative statics apparatus cannot be applied

to show the behavior in Figure 6. Second, implicitly differentiating both sides of (4.2) with
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respect to κ, and showing that dα
dκ

is negative for small κ and positive for large κ is also

intractable.

The policy lesson behind this final comparative statics of Må with respect to κ is that

increasing the meeting rate between the two sides of the economy in the hope of achieving

higher surplus is not always socially optimal. Specifically, consider an economy where there

are spillovers from successful low type projects (here the a-types) to the creation of high type

projects (here the b-types) — as is common in the innovation literature, where small low

growth accomplishments create high growth opportunities. There are empirical evidences

(Lerner et al., 2005) suggesting that small innovative firms are particularly weak in protecting

their intellectual property and thus their investors do not internalize the spillover gains in

their decisions.

In such circumstances, policies aimed at reducing the search frictions are initially helpful

as they increase the incentives to invest in small projects by amplifying the learning effect.

However, continued reduction eventually backfires and shrinks the investment region for the

low growth projects (due to the domination of the opportunity cost effect).

5 Reputational Externality

Building on the previous results, in this section, I study an economy populated by a continuum

of agents (instead of just one) who are all making matching decisions. In frictional economies

where there is not a price for reputation, one would expect that agents with higher reputations

are exposed to more contacts, and that in turn implies smaller contacts for less reputable

agents. For example, in the context of two-sided market of venture capitalists and startups,

there are empirical evidences about the individual benefits associated with higher reputation

among VCs. The findings include the theory of grandstanding, and lower pay-for-performance

for smaller and younger VC firms toward the goal of establishing a reputation and enjoying

a higher deal flow (Gompers, 1996; Gompers and Lerner, 1999). Relatedly, by dissecting

investment-level data Nanda et al. (2020) find that initial success confers preferential access

to deal flow and perpetuates the early superior performances made by successful VCs.

Expanding upon the previous baseline results, in this section I examine how this connection

between higher reputation and higher meeting rates manifests itself in the equilibrium. The

main finding is that as a result of this externality, the equilibrium is not efficient, and

marginally decreasing the termination threshold (thereby enlarging the equilibrium matching
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set) increases the social surplus of the economy.

The nature of the reputational externality is best described if we focus only on a single

group of projects. This approach is important due to the potential entanglement of project

selection motives, which would complicate efforts to find equilibrium outcomes in an environ-

ment where contact rates are reputation dependent. Thus, moving forward with the analysis,

in order to distinctly pin down the impact of reputational externality on the equilibrium

outcome, I assume only b-projects are available, and subsequently I drop the b-index from

the associated variables.

In the following, I first find the stationary cross-sectional distribution of reputation. Then,

in a mean-field setting, I postulate a functional form on how the meeting rate of each agent

could depend on her reputation as well as the distribution of reputation across all agents

(Section 5.1). Next, in Section 5.2, I prove the existence of a symmetric stationary equilibrium

and show that it is not surplus efficient.

5.1 Stationary Distribution

Toward obtaining a non-degenerate cross-sectional distribution, I assume agents are short-

lived. Specifically, they leave the economy exogenously at the rate of δ, and are born with

the same rate, bearing the initial reputation of p.

In preceding sections, the meeting rate did not depend on the agent’s reputation. In

this part, holding the total rate of contacts constant, I assume this flow is not uniformly

distributed among agents, rather it contacts more (respectively, less) reputable agents with

higher (respectively, lower) probability, according to a reputation weight function ψp¨q.
Let π8 be the steady-state random variable that represents the stationary distribution of

reputation across all agents. Consequently, the rate at which an agent possessing a reputation

of π meets projects is

κφ
ψpπq
µ

, where µ :“ E rψpπ8qs .

Here again κ represents the extent of search frictions in the economy and φ stands for the

mass of available projects, that is exogenously replenished and held constant. I further assume

ψ is increasing, concave and differentiable, particularly it belongs to the following class:

Ψ :“
!

ψ : r0, 1s Ñ r0, 1s
ˇ

ˇ

ˇ
ψp0q “ 0, ψp1q “ 1, ψ1 ě 0 and ψ is concave

)

. (5.1)

I conjecture (and prove in the next section) that there exists a symmetric stationary
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equilibrium wherein all agents terminate their matches at a common α. In light of this

conjecture, I denote the cross-sectional density function of the matched agents by mpπq
supported on rα, ps. Let mp1q and np1q be the discrete measures of the matched and

unmatched agents with maximum reputation (i.e., at π “ 1). And finally npαq and nppq
are the discrete measures of unmatched group at α and p. Figure 7 plots all pieces of the

cross-sectional steady-state distribution of agents’ reputations.

0 α p 1
0

mpπq

mp1q

nppq

np1q
npαq

π

dist. of π8

Figure 7: Steady-state cross-sectional distribution of π8

The inflow outflow equations at the discrete masses are:

9mp1q “ ´λmp1q ` κφ
np1q
µ

´ δmp1q, (5.2a)

9np1q “ λmp1q ´ κφ
np1q
µ

´ δnp1q `
ż p

α

λπmpπq dπ, (5.2b)

9nppq “ ´κφ ψppq
µ

nppq ´ δnppq ` δ. (5.2c)

The rationale behind the dynamics in (5.2) is rather simple. For example, the rhs in (5.2b)

consists of the influx from the successful matched agents with reputation π “ 1 who have

just become unmatched, the outflow resulting from the recently matched individuals, the

exogenous exits at the rate of δ, and finally the influx stemming from successful agents across

various intermediate reputation levels (from α to p).

The other discrete measure is npαq (the mass of unmatched agents at the lowest reputation

level, i.e., the termination point), whose value is determined by the conservation of the zeroth

and first moment of the overall distribution (that is found out in the appendix).

The law of motion for the continuous density of the matched agents supported on the
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matching interval pα, ps is

9mpπq “ ´ λπmpπq
looomooon

outflow of
successful agents

`λBπ
`

πp1 ´ πqmpπq˘
looooooooooomooooooooooon

net learning inflow

´δmpπq
looomooon

exogenous exits

. (5.3)

The first component in the rhs above is the outflow from mpπq (due to the recent success

events) to np1q. The second term captures the net learning effect, by factoring the inflow

of agents whose reputation is in pπ, π ` dπq and thus falling due to the lack of success and

the outflow of the unsuccessful group with reputation in pπ ´ dπ, πq.9 Finally, the third

term picks up the exogenous departures. In the steady-state 9mpπq “ 0, hence rendering a

differential equation for the density function whose solution is

mpπq “ mpαq
´π

α

¯δ{λ´1
ˆ

1 ´ π

1 ´ α

˙´pδ{λ`2q
, @π P rα, ps. (5.4)

The group of agents with minimum reputation at π “ α are subject to two flows: the inflow

from the matched individuals in pα, ps and the outflow due to the exogenous exits. Therefore,

in the steady-state it must be that the inflow equals δnpαq. Lastly, the net inflow to the

matched agents on the interval pα, ps is equal to the net outflow in the steady-state, that is:

κφ
ψppq
µ

nppq
loooooomoooooon

new matches
originating from p

“ λ

ż p

α

πmpπq dπ
looooooomooooooon

outflow of
successful agents

` δ

ż p

α

mpπq dπ
loooooomoooooon

exogenous exists

` δnpαq
loomoon

endogenously
separated matches

. (5.5)

Lemma A.4 in the Appendix A.8 finds the steady-state solution to the preceding distributional

equations in closed-form, thereby paving the way for the subsequent equilibrium analysis.

5.2 Equilibrium and Efficiency

Toward finding the symmetric stationary equilibrium, each agent stipulates the population

average for ψ (call it by µ), and accordingly specifies the maximum attainable reputation

function in the unmatched status (i.e., wp1q), via the mapping W : r0, 1s Ñ R`:

Wpµq :“ pr ` δq´1κφ{µ
r ` δ ` λ ` κφ{µ pλ ´ cq . (5.6)

9The first two terms can also be understood in the context of Kolmogorov Forward equation (see
Theorem 17.4.14 of Cohen and Elliott (2015)), and associate that with the density function of the reputation
process dπt “ p1 ´ πt´ q rdιt ´ λπt´dts.
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Observe that the above mapping represents the value of wp1q (analogous to equation (A.3)),

adjusted for the current setting, where the agents are short-lived and the contact rate depends

on the reputation weight function ψp¨q and its steady-state average µ.

Then, followed by the Bellman equation on the continuation region induced by wp1q “
Wpµq, namely

rvpπq “ λ ´ c ` λ
`

wp1q ´ vpπq˘ ´ λπp1 ´ πqv1pπq ´ δvpπq,

each agent terminates the match at α “ Apwp1qq, where A : R` Ñ r0, 1s is given by

Apwq :“ c
λp1`wq . This follows from the expression found for the termination point in (3.2). In

the symmetric stationary equilibrium the initial stipulation about µ is self-fulfilling, that is

µ “ M
`

µ,A ˝ Wpµq˘, where M : r0, 1s2 Ñ R` returns the population average of reputation

weights under the steady-state measure π8, namely:

Mpµ, αq “ E rψpπ8qs “ mp1q ` np1q ` ψppqnppq `
ż p

α

ψpπqmpπq dπ ` ψpαqnpαq .

Definition 1 (Symmetric stationary equilibrium). The symmetric stationary equilibrium

in this economy with reputational externality is the set of all fixed-points of the mapping

M
`¨,A ˝ Wp¨q˘ on the unit interval. A generic member is denoted by µe. Associated with the

equilibrium outcome µe is the equilibrium termination point αe “ A ˝ Wpµeq.

Theorem 3. There exists a symmetric stationary equilibrium.

Proof. In the Appendix A.8.2, I show that an increase in α or µ, holding the other variable

constant, positively shifts the steady-state distribution of π8 in the sense of second order

stochastic dominance. Since ψp¨q is increasing and concave, one can deduce that Mpµ, αq is an

increasing function in each argument. In addition, the composition map A ˝ W is increasing.

Therefore the mapping µ ÞÑ M
`

µ,A ˝Wpµq˘ is a continuous increasing function from the unit

interval to itself.10 Hence, a fixed-point µe and αe “ A ˝ Wpµeq exist, thereby establishing

the existence of a symmetric stationary equilibrium.

Contrasting the equilibrium outcome with the socially optimal choice, I express the
10It is clearly continuous on p0, 1s, and it is made continuous at µ “ 0 by letting Wp0q :“ limµÑ0 Wpµq and

Mp0, αq :“ limµÑ0 Mpµ, αq, where both limits exist in light of the expression (5.6) and Lemma A.4 in the
appendix.
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steady-state flow surplus of the economy in terms of the measures found in Lemma A.4:

rSpµ, αq “ pλ ´ cqmp1q `
ż p

α

pλπ ´ cqmpπq dπ. (5.7)

A benevolent social planner selects an α so that jointly with its induced µ, that is the

fixed-point of M p¨, αq, they maximize the social surplus Spµ, αq.

Definition 2 (Planner’s problem). The planner’s problem is

max
α

Spµ, αq subject to µ “ Mpµ, αq .

Note that the externality failed to be internalized in the agents’ decisions is originated

from the impact of their choices on µ. Therefore, it is essential to incorporate µ “ Mpµ, αq as

the constraint of the planner’s problem.

Next proposition explains why the identified equilibrium outcome is not constrained

socially efficient, and highlights the direction along which the social surplus increases.

Proposition 4. Every symmetric stationary equilibrium of the economy with reputational

externality is not constrained-efficient. In particular, a local reduction in the termination

point αe increases the social surplus.

Proof. Every symmetric equilibrium is characterized by its associated pair pαe, µeq, in which

αe “ A ˝ Wpµeq and µe “ Mpµe, αeq. It is further a stable equilibrium if BµMpµe, αeq ă 1.

From the expression for the social surplus in (5.7) and Lemma A.4, one can see that S is

decreasing in µ, therefore, if Mp¨, αq has multiple fixed-points for a given α the one with the

smallest µ is the efficient one. Furthermore, this equilibrium (with the smallest µ) is stable

because Mp0, αq ą 0, and Mp¨, αq downcrosses the 45-degree line at its first intersection.

Toward proving the constrained inefficiency, I employ a variational approach in the

neighborhood of αe. Suppose the economy is in a stable pair pαe, µeq, and the planner moves

αe by ∆α. The new smallest fixed-point µe ` ∆µ satisfies

µe ` ∆µ “ Mpµe ` ∆µ, αe ` ∆αq « Mpµe, αeq ` pBµMq∆µ ` pBαMq∆α ,

hence ∆µ « BαM
1´BµM ∆α. Consequently, the change in the social surplus is:

r∆S « r

ˆ BαM
1 ´ BµM BµS ` BαS

˙

∆α . (5.8)
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Note that in every stable fixed-point of Mp¨, αeq, BαM
1´BµM ą 0, because M is shown to be

increasing in α and by the stability BµM ă 1. Additionally, as argued above BµS ă 0.

Therefore, lowering αe (i.e., ∆α ă 0) leads to a strict improvement in the social surplus if

BαS ă 0. Expression (5.7) combined with Lemma A.4 and subsequent rearrangements, result

in

rBαSpµe, αeq “ pλ ´ cqBαmp1q ´ pλα ´ cqmpαq

“ ´ κφψppq{µe

δ ` κφψppq{µe

1 ´ p

p1 ´ αeq2
ˆ

p

1 ´ p

˙´δ{λˆ
αe

1 ´ αe

˙δ{λ

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

ą0

ˆ

„

δpλαe ´ cq
λαe

` pλ ´ cqκφ{µe

δ ` λ ` κφ{µe

ȷ

.

Therefore, the sign of BαSpµe, αeq is the opposite of the sign of the expression in the bracket.

Recalling that in the equilibrium αe “ A ˝ Wpµeq, so

δpλαe ´ cq
λαe

` pλ ´ cqκφ{µe

δ ` λ ` κφ{µe

“ ´δWpµeq ` pλ ´ cqκφ{µe

δ ` λ ` κφ{µe

“ ´δWpµeq ` δ lim
rÑ0

Wpµeq ě 0,

where the last inequality holds because Wpµeq is decreasing in r. This justifies that

BαSpµe, αeq ă 0, and hence by (5.8) a small reduction of equilibrium αe leads to a strict

improvement of the social surplus function.

α˚ αe p
0 α

Spαq

Figure 8: Social surplus with reputational externality

Figure 8 is the result of a simulation that plots the social surplus as a function of α,
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while implicitly satisfying µ “ Mpµ, αq at every α P r0, ps. As depicted in this plot, the

equilibrium termination point αe is greater than the socially optimal point α˚. Hence, the

equilibrium outcome is associated with early termination of projects, and predicts a lower

tolerance for failure than what is socially efficient. Given that the closed-form expressions

for the steady-state distribution of π8 are intricate, establishing a non-local argument to

demonstrate that αe consistently exceeds α˚ seems challenging. In the following example, I

delve into an illustrative scenario that involves a limiting case.

Example 2 (Long-lived agents, δ Ñ 0). According to Lemma A.4 as δ Ñ 0, namely when

agents become asymptotically long-lived, the limiting value of the flow social surplus becomes

equal to

lim
δÑ0

rS “ lim
δÑ0

pλ ´ cqmp1q “ κφ

λµ ` κφ

p ´ α

1 ´ α
.

It was shown in the proof of Proposition 4 that µ is increasing in α, hence the above

limit is decreasing in α. Thus, in an economy populated by long-lived agents and subject

to reputational externality, reducing the equilibrium termination point α unambiguously

increases the social surplus.

The underlying reason for the surplus inefficiency stems from the reputational externality.

This results in an undesirably high proportion of agents who have high ability yet are inactive,

i.e., their reputation get stuck at α. The mass of such agents is equal to αnpαq. By Lemma A.4

as δ Ñ 0, one has

lim
δÑ0

αnpαq “ αp1 ´ pq
1 ´ α

,

that is increasing in α. This means an inefficiently high proportion of agents stop the matching

activity sooner than the optimal level, in spite of their high ability, which in turn reduces the

social surplus.

6 Concluding Remarks

I study the optimal project selection policy of an agent with unknown ability. The agent

randomly meets the projects drawn from a heterogeneous pool, that differ in their quality.

In a match between the agent and a project a breakthrough arrives at the exponential rate

depending on the type of the agent and the quality of the project. Since maintaining the

projects are costly, the agent effectively solves a stopping time problem, in which she weighs

the expected benefit of learning about her type as well as accomplishing breakthroughs
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against the endogenous reservation function (that is called the reputation value function in

the paper).

The matching sets indicate what types of projects an agent with a certain level of

reputation is willing to accept or continue the match with. In the space of continuously

differentiable functions, I show there exists a unique optimum. Sections of the optimal

matching set are increasing intervals, thus the agent follows cutoff strategies at the optimum.

The thresholds depend on the type of the projects and are endogenously determined. They

encode a number of messages: For example, lower levels of flow cost and time discount rate

are associated with larger optimal matching sets. Additionally, it is shown that raising the

meeting rate (or lowering the search frictions) has asymmetric effects across the two types of

the projects: it unambiguously expands the high type section of the matching set, while on

some regions it initially expands and then shrinks the low type section.

Compared to the no-learning benchmark (where there is no incomplete information about

the agent’s type), the optimal continuation sets are larger, therefore the agent shows more

patience before stopping the projects. This is due to the convexity of the value functions in

reputation, that itself is resulted from the learning incentives in the agent’s dynamic problem.

Finally, the single agent setting is extended to an economy populated by a continuum

of agents that exhibits reputational externality. Specifically, the meeting rate of each agent

is positively impacted by her reputation and negatively by the average reputation weight

across the population. Because of this externality the symmetric stationary equilibrium is not

surplus efficient, and I show a local increase in the agents’ tolerance (equivalently a marginal

reduction in the lower endpoint of the equilibrium matching set) increases the social surplus.
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A Proofs

A.1 Heuristic Derivation of the Bellman Equations

First, I argue how the Bellman equation for wpπq is derived. Below, I invoke a standard

dynamic programming analysis:

wpπq “ κ
ÿ

qPMpπq

`

wpπq ` pvqpπq ´ wpπqq˘φq dt ` κ
ÿ

qPta,buzMpπq
wpπqφq dt

``

1 ´ κpφa ` φbq dt
˘p1 ´ r dtqwpπq ` opdtq .

The first term in the rhs is the expected value of payoffs generated from all acceptable

matches, noting that the next project with type q arrives at the rate of κφq. The second

term is the expected payoff over all denied matches, and the third term simply refers to the

discounted payoff conditioned on receiving no proposal over the period dt. Rearranging the

above expression and letting dt Ñ 0 amount to the Bellman equation for w in (2.2).

Next, I offer a heuristic derivation of the HJB equation in (2.4). Observe that if the

agent stops immediately, then vqpπq “ wpπq. On the continuation region however, assume

that she keeps the match over an infinitesimal period dt. Over this period she incurs the

total cost of c dt and receives the discounted payoff that consists of two factors: (i) with the

approximate probability of λqπ dt a breakthrough happens and she receives the unit prize

plus the value of being an unmatched agent with the maximum reputation (i.e., wp1q); (ii)

with the remaining probability of 1 ´ λqπ dt the match does not accomplish a breakthrough,

thus the agent’s posterior belief drops down to π ´ dπ, and she continues with the updated

valuation of vqpπ ´ dπq. Therefore, one arrives at the following representation for vqpπq on

the continuation region:

vqpπq “ ´c dt ` p1 ´ r dtq
´

λqπ dt
`

1 ` wp1q˘ ` p1 ´ λqπ dtq vqpπ ´ dπq
¯

` opdtq .

By (2.1) during an unsuccessful period of dt, we have dπ “ ´λqπp1 ´ πq dt ` opdtq. In

addition, vqpπ´ dπq “ vqpπq ´ v1
qpπq dπ` opdtq. Replacing these two into the above equation,

applying some rearrangements and sending dt Ñ 0 justify the HJB equation in (2.4).
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A.2 Proof of Proposition 1

Suppose the agent with reputation π is approached by an a-project. Her optimal strategy is to

match with the project so long as her reputation is above some level π0 ď π, i.e., the threshold

rule. The case of π0 “ π simply means the agent rejects the project. Let πq
t represent the

deterministic solution to equation (2.1), when the agent is matched to a q-project. Define tq
as the deterministic time at which this solution crosses the threshold π0, namely:

tq :“ inftt ě 0 : πq
t “ π0u .

Because of Bayes law, we have

π0
1 ´ π0

“ π

1 ´ π
e´λqtq .

Therefore, λata “ λbtb, that in turn means Ppσa ą taq “ Ppσb ą tbq, in that σq was defined as

the exponential time of the breakthrough in a q-match. By the optimality of π0 as a cutoff

strategy for an a-match, one has:

vapπq “ E

„

e´rσa ´ c

ż σa

0

e´rsds ` e´rσawpπσaq;σa ď ta

ȷ

`E

„

´c
ż ta

0

e´rsds ` e´rtawpπa
taq;σa ą ta

ȷ

.

Since πσa “ 1, πa
ta “ π0 and ta is a deterministic time, then

vapπq “ E

„

e´rσa ´ c

ż σa

0

e´rsds ` e´rσawp1q;σa ď ta

ȷ

`
ˆ

´c
ż ta

0

e´rsds ` e´rtawpπ0q
˙

P pσa ą taq .
(A.1)

Recall that vbpπq is the optimal matching value function when the agent is approached by a

b-project, therefore, choosing (the deterministic value) tb as a stopping time when backing a

b-project leads to a weakly smaller payoff. That is by equation (2.3) it holds that

vbpπq ě E

„

e´rσb ´ c

ż σb

0

e´rsds ` e´rσbwpπσb
q;σb ď tb

ȷ

` E

„

´c
ż tb

0

e´rsds ` e´rtbwpπb
tb

q;σb ą tb

ȷ

.

33



By a similar reasoning, one obtains that

vbpπq ě E

„

e´rσb ´ c

ż σb

0

e´rsds ` e´rσbwp1q;σb ď tb

ȷ

`
ˆ

´c
ż tb

0

e´rsds ` e´rtbwpπ0q
˙

P pσb ą tbq .
(A.2)

Next, I compare the rhs of equations (A.1) and (A.2). First, observe that

E

„

e´rσb ´ c

ż σb

0

e´rsds ` e´rσbwp1q;σb ď tb

ȷ

“ Ppσb ď tbqE
„

e´rσb ´ c

ż σb

0

e´rsds ` e´rσbwp1q ˇˇσb ď tb

ȷ

.

One can easily verify that since λb ą λa and λata “ λbtb, the conditional distribution of

pσa | σa ď taq first order stochastically dominates the conditional distribution of pσb | σb ď tbq.
The expression above inside the conditional expectation is a decreasing function in σ, therefore,

E

„

e´rσb ´ c

ż σb

0

e´rsds ` e´rσbwp1q ˇˇσb ď tb

ȷ

ě

E

„

e´rσa ´ c

ż σa

0

e´rsds ` e´rσawp1q ˇˇσa ď ta

ȷ

.

Since Ppσb ď tbq “ Ppσa ď taq, the first terms on the rhs of (A.1) and (A.2) compare as:

E

„

e´rσb ´ c

ż σb

0

e´rsds ` e´rσbwp1q;σb ď tb

ȷ

ě

E

„

e´rσa ´ c

ż σa

0

e´rsds ` e´rσawp1q;σa ď ta

ȷ

.

Regarding the second terms, observe that Ppσb ą tbq “ Ppσa ą taq and tb ă ta, hence

ˆ

´c
ż tb

0

e´rsds ` e´rtbwpπ0q
˙

P pσb ą tbq ě
ˆ

´c
ż ta

0

e´rsds ` e´rtawpπ0q
˙

P pσa ą taq .

The previous two inequalities jointly imply that vbpπq ě vapπq, thus proving Proposition 1.
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A.3 Proof of Corollary 2

At π “ 1, there is no learning and hence the Bellman equation in (2.5) reduces to

vqp1q “ max

"

wp1q, λq ´ c

r ` λq
` λqwp1q
r ` λq

*

.

This implies 1 P Mq if and only if λq ´ c ą rwp1q. Since λb ą c and Ma Ď Mb, then

1 P Mb always. Let wb be the reservation value function in an outcome where 1 R Ma. Then

according to the other leg of the fixed-point system, i.e., equation (2.2), it must be that

rwbp1q “ κφb pλb ´ cq
r ` κφb ` λb

. (A.3)

Hence, 1 R Ma implies that λa ´ c ď rwbp1q.
Conversely, assume 1 P Ma and let wabp1q be the reservation value function in this

outcome, where 1 P Ma. Specifically, one obtains

rwabp1q “ κφb pλb ´ cq pr ` λaq ` κφa pλa ´ cq pr ` λbq
pr ` λaq pr ` λbq ` κφb pr ` λaq ` κφa pr ` λbq . (A.4)

Then, 1 P Ma means λa ´ c ą rwabp1q. Also, because of optimality in equation (2.2), one

has wabp1q ą wbp1q, hence it must be that λa ´ c ą rwbp1q.

A.4 Proof of Proposition 2

To prove this proposition, I will first show that Ma is always an interval, implying that it is

always connected. By Corollary 2, 1 P Ma in the low cost regime. So the following lemma

already establishes that Ma must be an increasing interval in the low cost regime.

Lemma A.1. In both cost regimes (low and high) the optimal Ma is an interval.

Proof. Let us define Dava :“ Lava´rva´c. Since va belongs to C1, then Dava is continuous. In

addition, superharmonicity implies that Davapπq ď 0 for all π, and particularly, Davapπq “ 0

on Ma by the Bellman equation. Suppose π P Mc
a X Mb, then

vapπq “ wpπq “ κφb

r ` κφb

v˚
b pπq .
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Therefore, the Bellman equation for vb̊ implies that

Davapπq “ ´κφb

r ` κφb

pλb ´ λaq rvb̊ pπq ` c

λb
` rλaπ

`

1 ` wp1q˘ ´ cr

r ` κφb

.

The unique characterization for vb̊ in (3.3) is twice differentiable. Since λb ą c, it is easy

to verify that v˚2

b ě 0, and especially v˚2

b ą 0 on Mb. Hence, for π P Mc
a X Mb the above

expression implies that

d2

d π2
Davapπq “ ´κφbpλb ´ λaq

pr ` κφbqλb v˚2

b pπq ă 0 .

Therefore, Dava is strictly concave on every connected subset of Mc
a X Mb. Now assume

by contradiction that Ma is not connected. Thus, it shall contain two disjoint maximal

open intervals, say pπ1, π2q and pπ3, π4q, where π2 ă π3. Since Mb is an increasing interval

containing Ma — respectively, by Lemma 2 and Corollary 1 — it must be that rπ2, π3s Ă
Mc

a X Mb. The previous analysis means that Dava “ 0 on pπ1, π2q Y pπ3, π4q, and Dava

is strictly concave in between, i.e., on rπ2, π3s. Thus, continuity of Dava implies that it is

positive on rπ2, π3s, violating the superharmonicity, and thus proving the lemma.

The following two lemmas are aimed at proving Ma “ H in the high cost regime. In

the first one, I show a characterization for the optimal matching set that only hinges on

the optimal matching value functions v. Borrowing that in the second lemma, I show Ma

cannot have a lower boundary point in Mb. Thus, in light of Ma Ď Mb, one can conclude

that Ma “ H. Finally, in both of these lemmas vb is equal to the optimal vb̊ — determined

uniquely in (3.3) — but the ˚ superscript is dropped to avoid clutter.

Lemma A.2. At the optimum, π P Ma X Mb if and only if

κφa

r ` κφa

ă vbpπq
vapπq ă r ` κφb

κφb

. (A.5)

In addition, π P Mc
a X Mb if and only if the second inequality above binds.

Proof. An equivalent representation for equation (2.2) is

wpπq “ κ
`

φavapπqχapπq ` φbvbpπqχbpπq˘

r ` κ
`

φaχapπq ` φbχbpπq˘ . (A.6)

One can check that if the inequality chain (A.5) holds, then with χapπq “ χbpπq “ 1 in the
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above representation, both of the conditions vapπq ą wpπq and vbpπq ą wpπq are satisfied,

and hence the if part is established. For the only if direction, assume π P Ma X Mb, then

it must be that χapπq “ χbpπq “ 1. Replacing this in (A.6) and simplifying vbpπq ą wpπq
justify the first inequality in (A.5). Similarly, simplifying vapπq ą wpπq leads to the second

inequality in (A.5). The proof of the last claim in the lemma follows the same logic.

Lemma A.3. Suppose Ma and Mb are the optimal matching sets in the high cost regime.

Then, Ma cannot have a lower boundary point in Mb.

Proof. Assume by contradiction that x :“ infMa belongs to Mb. Then, continuous differen-

tiability implies that

vapxq “ wpxq “ κφb

r ` κφb

vbpxq and v1
apxq “ w1pxq “ κφb

r ` κφb

v1
bpxq . (A.7)

Now define Ωqpxq :“ ´c ` λqx
`

1 ` wp1q˘ and Γqpxq :“ r ` λqx. Then, continuous dif-

ferentiability and the Bellman equations on the continuation regions Ma and Mb imply

that:
v1
bpxq
v1
bpxq “ λa

λb

Ωbpxq ´ Γbpxqvbpxq
Ωapxq ´ Γapxqvapxq .

Simplifying the previous two equations results in

ˆ

λb
λa

´ 1

˙

rvbpxq “ ´c
ˆ

r ` κφb

κφb

λb
λa

´ 1

˙

` rλbx
`

1 ` wp1q˘

κφb

. (A.8)

By Lemma A.2, x is a maximizer of vbp¨q{vap¨q. Also, observe that va solves essentially the

same Bellman equation (upto the change of constants) as vb̊ . Thus, the form of its particular

and homogenous solutions are the same as vb̊ , and hence it becomes twice differentiable on

Ma. Since x is a maximizer of vb{va, and this ratio strictly decreases to the right of x, then

it must be that limεÓ0
´

vbpx`εq
vapx`εq

¯2 ď 0. Let us denote v2
q pxq :“ limεÓ0 v2

q px ` εq for q P ta, bu.
Then, the previous second order condition together with (A.7) imply that:

v2
b pxq
vbpxq ď v2

apxq
vapxq ñ v2

b pxq ď r ` κφb

κφb

v2
apxq . (A.9)

One can find an expression for the second order derivatives by differentiating the Bellman

equations on the continuation region:

rv1
qpxq “ λq

`

1 ` wp1q ´ vqpxq˘ ´ λqxv
1
qpxq ´ λqp1 ´ 2xqv1

qpxq ´ λqxp1 ´ xqv2
q pxq .
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Replacing v1
q from the original Bellman equation into the above relation yields the following

expression for v2
q :

λqxp1 ´ xqv2
q pxq “ ´r

`

1 ` wp1q˘

1 ´ x
` rpr ` λqq
λqxp1 ´ xq vqpxq ` c

`

r ` λqp1 ´ xq˘

λqxp1 ´ xq .

Plugging the second order derivatives from above into (A.9) and applying some rearrangements

lead to the following equivalent inequality:

rvbpxq
ˆ

λb
λa

´ 1

˙ˆ

1 ` r

λa
` r

λb

˙

ě
´

rx
`

1 ` wp1q˘ ´ cp1 ´ xq
¯

ˆ

r ` κφb

κφb

λb
λa

´ 1

˙

´ cr

λb

ˆ

r ` κφb

κφb

λ2b
λ2a

´ 1

˙

.

By substituting (A.8) into the above inequality, and applying some regroupings, one arrives

at:

x
”

`

1 ` wp1q˘`λa pr ` λbq ´ κφb pλb ´ λaq ˘ ´ c
`

λb ` r´1κφb pλb ´ λaq˘
ı

ě cr .

In the high cost regime wp1q follows (A.3), which after substitution into the above inequality

leads to an equivalent condition to (A.9), that is only in terms of the primitives of the model:

cr2

r ` κφb

ˆ

1 ` κφb

r ` λb

˙

` cxλb

ˆ

1 ` r

r ` λb

κφb

r ` κφb

˙

ď x
`

λa pr ` λbq ´ κφb pλb ´ λaq ˘ .
(A.10)

Next, I will show that the lhs above is always greater than the rhs, thus the contradiction is

resulted and there is no x “ infMa P Mb. Obviously at x “ 0 the lhs is greater than the

rhs. At x “ 1, the rhs is increasing in λa, so can be upper bounded when λa assumes its

maximum level in the high cost regime, i.e., c ` κφbpλb´cq
r`κφb`λb

. Therefore the rhs of (A.10) at

x “ 1 is upper bounded by

λa pr ` λbq ´ κφb pλb ´ λaq ď c pr ` λbq .

However, the lhs of (A.10) equals cpr ` λbq at x “ 1. So (A.10) can never be satisfied.

Therefore, the contradiction is resulted, and in the high cost regime Ma cannot have a lower

boundary point in Mb.
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By Corollary 1 at the optimum Ma Ď Mb. Thus, the previous lemma implies that

Ma “ H in the high cost regime, and thereby concluding the proof of Proposition 2.

A.5 Proof of Theorem 1

The fact that the suggested tuple satisfies the necessary conditions (2.2), (2.4), and (2.6) as

well as the majorizing condition is established in Section 3.1. It thus only remains to show

that this tuple also satisfies the superharmonic condition.

Superharmonicity of vb̊ . Obviously the superharmonic condition holds with equality on

pβ, 1s, because vb̊ solves the Bellman equation on this region. However, it needs to be checked

on r0, βs as well. Observe that for π P r0, βs, one has vb̊ pπq “ 0, thus

Lbvbpπq ´ rvbpπq ´ c “ λbπ
`

1 ` wp1q˘ ´ c ď λbβ
`

1 ` wp1q˘ ´ c “ 0 ,

where the last equality holds by Lemma 1.

Superharmonicity of vå . In the low cost regime and on the interval pα, 1s, vå clearly

satisfies the superharmonic property, because it actually solves the Bellman equation. The

proofs of the superharmoincity of vå in the low cost regime on r0, αs, and in the high cost

regime on r0, 1s follow the same logic, thus here I only present the latter. In the high cost

regime and on r0, βs one has vå “ 0, and thus

Lav
˚
apπq ´ rv˚

apπq ´ c “ λaπ
`

1 ` wp1q˘ ´ c ď λbβ
`

1 ` wp1q˘ ´ c “ 0 .

However, further analysis is required to establish the superharmonicity of vå on the interval

pβ, 1s. On this region, vå “ κφb

r`κφb
vb̊ , therefore,

Lav
˚
apπq ´ rv˚

apπq ´ c “ La

ˆ

κφb

r ` κφb

v˚
b

˙

pπq ´ rκφb

r ` κφb

v˚
b pπq ´ c

“ κφb

r ` κφb

`

Lav
˚
b pπq ´ rv˚

b pπq ´ c
˘ ` rλaπ

r ` κφb

`

1 ` wp1q˘ ´ rc

r ` κφb

.
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Adding and subtracting Lbvb̊ from the first parentheses above, and observing the Bellman

equation for vb̊ result in

Lav
˚
apπq ´ rv˚

apπq ´ c “ ´ κφb

r ` κφb

pLb ´ Laqv˚
b pπq ` rλaπ

r ` κφb

`

1 ` wp1q˘ ´ rc

r ` κφb

“ ´ κφb

r ` κφb

pλb ´ λaq π`1 ` wp1q ´ v˚
b pπq ´ p1 ´ πqv˚1

b pπq˘

` rλaπ

r ` κφb

`

1 ` wp1q˘ ´ rc

r ` κφb

.

One can readily verify that vb̊ is convex, so, vb̊ pπq ` p1 ´ πqv˚1

b pπq ď vb̊ p1q. That in turn

implies an upper bound on the above expression:

Lav
˚
apπq ´ rv˚

apπq ´ c

ď ´ κφb

r ` κφb

r pλb ´ λaq π
r ` λb

´

1 ` wp1q ` c

r

¯

` rλaπ
`

1 ` wp1q˘ ´ cr

r ` κφb

ď
˜

´ κφb

r ` κφb

r pλb ´ λaq
r ` λb

´

1 ` wp1q ` c

r

¯

` rλa
`

1 ` wp1q˘ ´ rc

r ` κφb

¸`
.

In the second inequality above, I used the fact that the rhs of the first inequality is affine

in π and negative at π “ 0. Let us denote the argument of p¨q` by Z. It is increasing in λa,

hence can be bounded above when λa is replaced by c` rwp1q (i.e., its maximum value in

the high cost regime):

Z ď ´ κφb

r ` κφb

r
`

λb ´ c ´ rwp1q˘

r ` λb

´

1 ` wp1q ` c

r

¯

` r
`

c ` rwp1q˘`1 ` wp1q˘ ´ rc

r ` κφb

“ ´ κφb

r ` κφb

pλb ´ cq pr ` λbq pr ` κφb ` cq
r pκφb ` r ` λbq2

` κφb

r ` κφb

pλb ´ cq pr ` λbq pr ` κφb ` cq
r pκφb ` r ` λbq2

“ 0 .

In the second line above wp1q is replaced from equation (A.3). This concludes the proof of

superharmonicity of vå with respect to La on pβ, 1s, thereby on the entire r0, 1s.

A.6 Proof of Theorem 2

Let w˚ be the reputation function that is induced by v˚ and M˚ following equation (2.2).

To verify the optimality, I need to show that given w˚, the matching set M˚ is the optimal
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continuation region, and v˚ is the optimal value function for the stopping time problem

of (2.3). I apply a Martingale verification argument to establish the optimality. Define

vqpι, πq :“ vq̊ pπq1tι“0u ` `

ι ` w˚pπq˘1tι“1u, where ι is the success indicator process. Since

v is a bounded function, for each q P ta, bu, one can find a bounded (and hence uniformly

integrable) Martingale process M q such that:

e´rtvqpιt, πtq “ vqpι, πq `
ż t

0

e´rs
`

Lqvqp¨, ¨q ´ rvqp¨, ¨q˘pιs´ , πs´q ds ` M q
t , (A.11)

where Lqvqpι, πq :“ Lqvqpπq1tι“0u. By the majorizing condition, for every stopping time τ ,

one has vqpιτ , πτ q ě ιτ ` w˚pπτ q, therefore

e´rτ
`

ιτ ` w˚pπτ q˘ ď vqpι, πq `
ż τ

0

e´rs
`

Lqvqp¨, ¨q ´ rvqp¨, ¨q˘pιs´ , πs´q ds ` M q
τ

ď vqpι, πq `
ż τ

0

ce´rs ds ` M q
τ ,

where in the second inequality I used the superharmonic property proven in Theorem 1.

Doob’s optional stopping theorem implies that EM q
τ “ 0, hence for every stopping time τ ,

one has

vqpι, πq ě Eπ,q,ι

„

e´rτ
`

ιτ ` w˚pπτ q˘ ´ c

ż τ

0

e´rs ds

ȷ

.

That in turn implies

v˚
q pπq ě sup

τ
Eπ,q,ι“0

„

e´rτ
`

ιτ ` w˚pπτ q˘ ´ c

ż τ

0

e´rs ds

ȷ

. (A.12)

To show the achievability in the above inequality, define

τq :“ inf
␣

t ě 0 : πt R M˚
q or ιt “ 1

(

,

where M˚ is characterized in Theorem 1. Applying equation (A.11) yields

e´rτq
`

ιτq ` w˚pπτqq˘ “ e´rτqvqpιτq , πτqq
“ vqpι, πq `

ż τq

0

e´rs
`

Lqvqp¨, ¨q ´ rvqp¨, ¨q˘pιs´ , πs´q ds ` M q
τq

“ vqpι, πq `
ż τq

0

ce´rs ds ` M q
τq ,
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where the second equality holds because the Bellman equation holds on Mq̊ . Taking

expectations of both sides in the above equality leads to

vqpι, πq “ Eπ,q,ι

„

e´rτq
`

ιτq ` w˚pπτqq˘ ´ c

ż τq

0

e´rs ds

ȷ

.

Therefore,

v˚
q pπq “ Eπ,q,ι“0

„

e´rτq
`

ιτq ` w˚pπτqq˘ ´ c

ż τq

0

e´rs ds

ȷ

,

which together with (A.12) conclude the proof.

A.7 Proof of Proposition 3

All the arguments below are stated without using ˆ on top of the variables. After I have

established the unique existence of the optimum, one can reintroduce the ˆ superscript.

Observe that the variational Bellman equation for vqpπq in (4.1) can be equivalently

expressed by:

vqpπq “ max

"

wpπq, λqπ ´ c

r ` λqπ
` λqπwpπq

r ` λqπ

*

. (A.13)

This representation implies that vqpπq ą wpπq if and only if the second maximand is larger

than the first, that happens if and only if rwpπq ă λqπ ´ c. Hence,

π P Mq ô vqpπq ą wpπq ô λqπ ´ c ą rwpπq . (A.14)

This already implies that in any optimal outcome, Ma Ď Mb, thereby proving the last claim

in part (i). Additionally, it shows that

wpπq “ 0 if and only if vbpπq “ 0 . (A.15)

Let β̂ “ infMb, then vbpβ̂q “ 0, and hence β̂ “ c{λb. Then, (A.14) and (A.15) together

imply that vbpπq ą 0 for all π ą β̂, thereby proving the unique existence of xMb “ pβ̂, 1s,
where β̂ “ c{λb.

To show the uniqueness of Ma, denote the reputation function in the outcome where

π P Ma X Mb by wabpπq, and in the outcome where π P Mc
a X Mb by wbpπq. One can find

closed-form expressions for both of these functions using (2.2) and (A.13). Subsequently, by

employing lengthy yet straightforward algebraic computations, one can show that a threshold
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α̂ ą 0 exists, rendering the following statements equivalent:

wabpπq ą wbpπq ô λaπ ´ c ą rwabpπq ô π ą α̂ .

In particular, the expression for α̂ is

α̂ “ 1

2λaλb

`

cλb ´ rλa ` κφbpλb ´ λaq˘ˆ
b

r2λ2a ` 2rλa
`

cλb ´ κφbpλb ´ λaq˘ ` `

cλb ` κφbpλb ´ λaq˘2 .
(A.16)

Further computations confirm that α̂ ď 1 if and only if the economy is in the low cost regime.

Therefore, one obtains the unique existence of xMa “ H in the high cost regime, and xMa “
pα̂, 1s in the low cost regime. This concludes the proof of both parts in Proposition 3.

A.8 Required Results for Section 5.1

A.8.1 Steady-State Distribution

Lemma A.4. In the steady-state of the economy with short-lived agents and reputational

externality, the following holds:

ż p

α

mpπq dπ “ κφψppq{µ
δ ` κφψppq{µ

p ´ α

Υ2pαq ´ αΥ1pαq
ˆ

Υ1pαq ´ λ

δ ` λ
Υ2pαq

˙

, (A.17a)
ż p

α

πmpπq dπ “ κφψppq{µ
δ ` κφψppq{µ

δ

δ ` λ

pp ´ αqΥ2pαq
Υ2pαq ´ αΥ1pαq , (A.17b)

mp1q “ κφψppq{µ
δ ` κφψppq{µ

κφ{µ
δ ` λ ` κφ{µ

λ

δ ` λ

pp ´ αqΥ2pαq
Υ2pαq ´ αΥ1pαq , (A.17c)

npαq “ κφψppq{µ
δ ` κφψppq{µ

Υ2pαq ´ pΥ1pαq
Υ2pαq ´ αΥ1pαq , (A.17d)

where

Υipαq :“
´ p

α

¯δ{λ´1
ˆ

1 ´ p

1 ´ α

˙´pδ{λ`2q
pip1 ´ pq ´ αip1 ´ αq, for i P t1, 2u .
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Proof. In the steady-state the time derivatives in (5.2) are zero, therefore (5.2a) and (5.2b)

jointly result in:

np1q “ δ ` λ

κφ{µ mp1q , (A.18a)

pδ ` λ ` κφ{µqδmp1q “ κφ{µ
ż p

α

λπmpπq dπ . (A.18b)

Also at π “ p, equation (5.2c) implies that nppq “ δ{pδ ` κφψppq{µq. Next, the expression

found in (5.4) translates to

ż p

α

πmpπq dπ “ λmpαq
δ ` λ

Υ2pαq . (A.19)

The rhs to (5.5) can be simplified using the steady-state differential equation resulted from

9mpπq “ 0:

κφ
ψppq
µ

nppq “ δκφψppq{µ
δ ` κφψppq{µ “ λ

ż p

α

πmpπq dπ ` δ

ż p

α

mpπq dπ ` δnpαq

“ λ

ż p

α

Bπ
`

πp1 ´ πqmpπq˘ dπ ` δnpαq

“ λ
`

pp1 ´ pqmppq ´ αp1 ´ αqmpαq˘ ` δnpαq
“ λmpαqΥ1pαq ` δnpαq .

(A.20)

Because of the Bayesian learning during the matches the steady-state average reputation

must be equal to p (i.e., conservation of the first moment):

mp1q ` np1q ` pnppq `
ż p

α

πmpπq dπ ` αnpαq “ p .

Simplifying this relation using (A.18b) and (A.19) implies that

λmpαqΥ2pαq ` αδnpαq “ δκφψppq{µ
δ ` κφψppq{µ p . (A.21)

It is now straightforward to solve for npαq and mpαq using (A.20) and (A.21), thereby

obtaining (A.17d) and

mpαq “ δκφψppq{µ
λ pδ ` κφψppq{µq

p ´ α

Υ2pαq ´ αΥ1pαq . (A.22)
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Substituting mpαq from above into (A.19) yields the lemma’s claim for
şp

α
πmpπq dπ, i.e.

equation (A.17b). Subsequently, mp1q can be found from (A.18b), thereby verifying (A.17c).

Finally, from the second line in (A.20), one obtains the following expression

ż p

α

mpπq dπ “ λmpαq
δ

ˆ

Υ1pαq ´ λ

δ ` λ
Υ2pαq

˙

,

that leads to (A.17a) after replacing mpαq in the above expression.

A.8.2 Stochastic Ordering

For a clearer understanding of the stochastic ordering of the steady distribution π8, I will

start by formulating the CDF of the density mp¨q:
ż π

α

mpxq dx “ κφψppq{µ
δ ` κφψppq{µ

p ´ α

Υ2,1pα, pq ´ αΥ1,1pα, pq
´ δ

δ ` λ
Υ2,1pα, πq ` Υ1,2pα, πq

¯

,

Υi,jpx, yq :“
´y

x

¯pδ{λ´1q ˆ1 ´ y

1 ´ x

˙´pδ{λ`2q
yip1 ´ yqj ´ xip1 ´ xqj .

(A.23)

In addition, using the solution found for mpπq and the expression (A.22) for mpαq, it is easy

to verify that for π P rα, ps

mpπq “ δκφψppq{µ
λ pδ ` κφψppq{µq

ˆ

π

p

˙pδ{λ´1q ˆ
1 ´ π

1 ´ p

˙´pδ{λ`2q
1

pp1 ´ pq . (A.24)

Therefore for a fixed µ the above density is independent of α.

My next goal is to show that Mpµ, αq is increasing in each argument holding the other

one constant. To achieve this, I turn to the theory of stochastic orders, and in particular,

I employ the second order stochastic dominance. For two real-valued random variables X

and Y , it is said that X ľSSD Y if EupXq ě EupY q for every increasing and concave function

u. An equivalent definition is that X ľSSD Y if E rpX ´ tq´s ě E rpY ´ tq´s for every t P R,

provided that the expectations exist.11 The following lemma provides a sufficient condition

for the second order stochastic dominance, drawing from the results of Karlin and Novikoff

(1963).

11For every r P R, prq´ :“ mintr, 0u. The reader can refer to Chapter 4 of Shaked and Shanthikumar
(2007) for the proof of the equivalence.
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Lemma A.5 (Sufficient condition for SSD). Suppose that the following two conditions hold:

(i) ErXs ě ErY s, and (ii) there exists t0 P R such that for all t ď t0, P pX ě tq ě P pY ě tq,
and for all t ą t0, P pX ě tq ď P pY ě tq. Then X ľSSD Y .

Proof. For every t ď t0,

E rpX ´ tq´s “ ´
ż 8

0

P p´pX ´ tq´ ą uq du “ ´
ż 8

0

P pX ă t ´ uq du

“ ´
ż t

´8
P pX ă zq dz ě ´

ż t

´8
P pY ă zq dz “ E rpY ´ tq´s .

Also, an equivalent representation for E rpX ´ tq´s is

E rpX ´ tq´s “ E rpX ´ tq;X ă ts

“ ErXs ´ t ´ E rX ´ t;X ě ts “ ErXs ´ t ´
ż 8

t

P pX ě zq dz .

Therefore,

E rpX ´ tq´s ´ E rpY ´ tq´s “ ErXs ´ ErY s `
ż 8

t

`

P pY ě zq ´ P pX ě zq ˘ dz .

The first term is positive and the integral term is also positive for all t ą t0, so E rpX ´ tq´s ě
E rpY ´ tq´s for all t ą t0 as well.

I will use the technique offered in this lemma to prove that an increase in α or µ positively

shifts the steady-state distribution of π8. This distribution is completely described by the

measures found in Lemma A.4.

Lemma A.6. Let α1 ď α2 ă p and µ1 ď µ2, then

(i) holding α constant, π8pµ2q ľSSD π8pµ1q.

(ii) Holding µ constant, π8pα2q ľSSD π8pα1q.

Proof.

Part (i): I show that

P pπ8pµ2q ě tq
#

ě P pπ8pµ1q ě tq @t ď p

ď P pπ8pµ1q ě tq @t ą p .
(A.25)
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Observe that for every t ą p,

P pπ8 ě tq “ mp1q ` np1q “ κφψppq{µ
δ ` κφψppq{µ

λ

δ ` λ

pp ´ αqΥ2,1pα, pq
Υ2,1pα, pq ´ αΥ1,1pα, pq ,

which is obviously decreasing in µ, hence proving the second assertion in (A.25). For every

t ď p:

P pπ8 ě tq “ 1 ´ P pπ8 ă tq “ 1 ´
ˆ

npαq `
ż t

α

mpπq dπ
˙

.

According to (A.17d), the mass npαq is decreasing in µ, so is
şt

α
mpπq dπ by (A.23). Hence,

P pπ8 ě tq must be increasing in µ for every t ď p, thus establishing the first line of (A.25).

By Bayesian learning E rπ8pµ2qs “ E rπ8pµ1qs “ p. Therefore both parts of the Lemma A.5

are satisfied to conclude Part (i).

Part (ii): Holding µ constant, for every t ď α2 we have P pπ8pα2q ě tq “ 1 ě P pπ8pα1q ě tq.
Alternatively, for every t ą α2, it holds that

P pπ8pαq ě tq “ 1ttďpu

ˆ
ż p

t

mpπq dπ ` nppq
˙

` np1q ` mp1q .

Because of (A.24) the integral term is independent of α (for a fixed µ). This is the case

for nppq as well. Therefore, it is sufficient to show that holding µ constant, np1q ` mp1q is

decreasing in α. This is equivalent to showing that the following expression is decreasing in

α:

pp ´ αqΥ2,1pα, pq
Υ2,1pα, pq ´ αΥ1,1pα, pq “ pp ´ αqΥ2,1pα, pq

pp ´ αqpp1 ´ pq ` p
α

˘δ{λ´1 ` 1´p
1´α

˘´pδ{λ`2q

“ p

«

1 ´ α2p1 ´ αq
p2p1 ´ pq

ˆ

α

p

˙δ{λ´1ˆ
1 ´ α

1 ´ p

˙´pδ{λ`2qff

“ p

«

1 ´
ˆ

α

1 ´ α

˙δ{λ`1ˆ
p

1 ´ p

˙´pδ{λ`1qff

.

Since α{p1´αq is increasing in α, then the above expression is decreasing in α. So as a result

of this, for every α1 ď α2 ă p and t ą α2, it holds that P pπ8pα2q ě tq ď P pπ8pα1q ě tq.
Hence, Lemma A.5 can be applied again to establish Part (ii).
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