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Abstract

We provide a quantitative assessment of welfare in the classical model of risk-sharing
and exchange under uncertainty. We prove three kinds of results. First, that in an
equilibrium allocation, the scope for improving individual welfare by a given margin
(an ε-improvement) vanishes as the number of states increases. Second, that the scope
for a change in aggregate resources that may be distributed to enhance individual
welfare by a given margin also vanishes. Equivalently: in an inefficient allocation, for a
given level of resource sub-optimality (as measured by the coefficient of resource under-
utilization), the possibilities for enhancing welfare by perturbing aggregate resources
decrease exponentially to zero with the number of states. Finally, we consider efficient
risk-sharing in standard models of uncertainty aversion with multiple priors, and show
that, in an inefficient allocation, certain sets of priors shrink with the size of the state
space.
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(far@caltech.edu) is at the Division of the Humanities and Social Sciences, Caltech.
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1 Introduction

We provide a quantitative assessment of individual and collective welfare in models of risk-
sharing, when the state space is large. Our model is completely standard: We consider an
exchange economy, with uncertainty, populated by a collection of risk-averse agents who
trade to share risk. Uncertainty is captured with a finite, but large, state space. The
welfare theorems apply, and Walrasian equilibrium allocations are Pareto optimal; but we
are interested in a quantitative assessment of welfare in these economies as the number of
states grows large.

Our main results are threefold.
First we consider individual welfare in a Walrasian equilibrium allocation. We quantify

welfare by the probability that a random perturbation of an agent’s equilibrium consumption
would provide a strict utility improvement: specifically, an improvement of “at least ε” over
equilibrium consumption; meaning that the perturbation would remain an improvement if we
were to shave off a fraction ε from consumption. Our first result is actually more general,
and quantifies the perturbations that could make at least one agent better off by at least ε,
but we focus on a simple special case in this introduction. Now, it is obvious that an agent’s
consumption can be improved whenever their preferences are monotonic, and the probability
of an improvement by perturbation is always strictly positive. Our first result says that the
probability that a perturbation is an individual ε-improvement converges (exponentially) to
zero as the number of states grows.

To understand our first result, consider the situation of an individual agent i in equilibrium.
The usual consumption-maximization diagram is reproduced in Figure 1 on the left. In the
figure, there are two states of the world (d “ 2), and an agent’s budget set is depicted in gray.
The budget is defined by an equilibrium price p, and the agent’s endowment ωi. The picture
shows the agent’s equilibrium consumption fi. The agent’s indifference curve, tangent to the
budget line at fi, is depicted as a dashed curve. The upper contour set is the region to the
northeast of the indifference curve that contains all consumptions that are preferred to fi.

We wish to assess the size of the upper contour set at fi: what is the scope for improving
i’s welfare at the equilibrium allocation f? By virtue of the monotonicity of i’s preference,
the upper contour set is, of course, infinite. It contains all the consumption vectors that are
larger, state by state, than f . So we consider its size relative to a ball that is centered at fi.
Specifically, we measure the size of the dotted region on the right panel of Figure 1. Think of
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Figure 1: Individual welfare.

the ball as a set of perturbations of fi.1 We wish to quantify how often such perturbations
would lead to a utility improvement for i. Key to our result is that the improvement should
be at least by ε; for simplicity the figure only depicts the strictly better bundles (the case of
ε “ 0).

The consumer would be better off with more consumption in every state, but they would
also be willing to accept a tradeoff of more consumption in one state than in another. Of course,
the tradeoff would have to be at terms of trade that are more favorable than equilibrium
prices. But the figure shows that there is a significant probability that a perturbation would
leave the agent strictly better off, and the upper contour contains much more than the bundles
that are larger state-by-state. So does the dotted region. Our first theorem says that, when
the number of states is d, the probability of the dotted region, calculated for ε improvements,
is bounded above by e´ε2d{8. In particular, it converges rapidly to zero as d grows large.

To put this bound in perspective, note that the fraction of bundles that are larger,
state-by-state, than fi also converges exponentially to zero. So our result says that, despite
the potential for utility improvements by trading off more consumption in some states for less
consumption in other, the scope for such potential improvement shrinks when the number of
states is large. In a sense, the curvature of utility does not matter in high-dimensional trade.
Our bound of e´ε2d{8 holds for any monotonic and quasi-concave utility function.

Our second main result concerns collective welfare in a Pareto optimal allocation. The
exercise is similar to our first result, but relies on redistributing aggregate consumption so

1The ball drawn in the figure includes negative consumption, but its radius may be taken to be arbitrarily
small so as to avoid negative consumption, if so desired. We may also restrict attention to consumption that
is unaffordable at equilibrium prices (the region to the northeast of the budget line) without changing the
essential message of our result.
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as to make all agents better off. For our second result, we consider an economy without
aggregate uncertainty, and fix an allocation that is Pareto optimal. This time we consider a
perturbation of aggregate consumption that can be redistributed to make all agents better
off by at least ε — meaning again a utility improvement that remains, even after shaving off
a fraction ε of consumption. We show that a perturbation to aggregate consumption that can
be redistributed to improve all agents by at least ε has vanishingly small probability.

Pareto optimality refers to efficiency with a fixed aggregate endowment, or aggregate
consumption. One cannot make all agents better off without changing the aggregate con-
sumption. Our result says, when the state space is large, the scope for collective welfare
improvements by a given margin ε is limited, even by changing aggregate consumption. Again
it is useful to compare our bound with the fraction of aggregate allocations that are larger
than the endowment, state-by-state. The fraction larger allocations shrinks exponentially to
zero, as does (according to our results), the allocation that afford a collective improvement.

Our second result can be interpreted in light of Debreu’s coefficient of resource utiliza-
tion (Debreu, 1951). If we consider an allocation that is not Pareto optimal, then Debreu’s
coefficient of resource utilization measures the degree of inefficiency inherent in the allocation.
We can again study the probability of an improving perturbation to aggregate consumption
that makes agents better off (not by ε this time, simply strictly better off). Our second main
result implies that this probability shrinks to zero exponentially as the number of states
grows large. If Debreu’s coefficient of resource utilization is CRU, and Pareto inefficiency
implies that CRU ă 1, then the probability is bounded above by e´p1´CRUq2d{8.2

Our third main result is not explicitly about welfare, but instead about the attitudes
towards uncertainty by agents who engage in efficient risk sharing. We consider the same
setting of economic exchange with no aggregate uncertainty, as in our second result; but we
strengthen the assumptions on preferences to focus on utilities with multiple priors. Think,
to fix ideas, on the max-min expected utility preferences of Gilboa and Schmeidler (1989).
Now we prove that, if the risk sharing agreement between the two agents can be improved
in the Pareto sense, then at least one of the two must have a small set of prior beliefs. The
stronger is the level of Pareto improvement, the smaller will be the size of the prior beliefs
set. This means that at least one of the two agents must, in some sense, be close to being
ambiguity neutral.

2Debreu (1951) proposes CRU P p0, 1s as a measure of inefficiency of an allocation, and shows that
CRU “ 1 if and only if the allocation is Pareto optimal.
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Our results rely on the study of concentration of measures, and specifically on the
implication of an Isoperimetric inequality to the separation of convex sets. Key is the role of
ε, or of CRU, in our discussion above. These magnitudes provide a certain “padding,” or
quantitative bound, on the degree of separation of the relevant convex sets. The phenomenon
of concentration of measure then has strong consequences for the volume of one of the sets
being separated, and in our economic models we can determine which of the sets must have
small volume (except for our third application, which is more subtle). Given its role in our
results, we discuss the magnitude of ε in Section 4.2.

2 The Model

2.1 Notations and Conventions

Before presenting our model and main results, we lay down some of the basic definitions we
shall make use of, as well as a few notational conventions.

Let A be a subset of a finite-dimensional normed vector space pRm, ∥¨∥q. The distance of
a point x P Rm from A is defined by distpx, Aq :“ infaPA∥x´a∥. By default, the norms used
in the paper are the Euclidean ℓ2 norm. When a particular p-norm is used, we refer to the
distance function by distp and the norm by ∥¨∥p. For the ℓ2 norm, we omit the subscript 2.

We represent the Euclidean open ball centered at c and with radius r by Bpc, rq :“ tx P

Rd
` : ∥x´c∥ ă ru. When the center is omitted, we take it to be the null vector 0. When the

radius is omitted, we assume it is r “ 1. Thus B denotes the standard (open) unit ball. In
the same manner, we denote the uniform probability law on Bprq by Pr.

For two subsets A, B Ď Rm, we define distpA, Bq :“ inf t∥a´b∥ : a P A, b P Bu. We refer
to the δ-extension of the subset A by Aδ “ tx : distpx, Aq ă δu, that coincides with A`δ B.

Given a measurable subset A Ď Rm, we denote its Euclidean volume by VolpAq that is
equal to the Lebesgue integral of the indicator function of A relative to the affine hull of A.
For example, if A is a m´1 dimensional surface in Rm, then VolpAq refers to the surface area
of A, as opposed to its m dimensional volume (which is zero).

If S is a finite set, we denote by ∆S “ tµ : S ÞÑ R`|
ř

sPS µpsq “ 1u the set of all
probability measures on S. We embed ∆S as a subset of Rd

`, and sometimes we refer to this
probability simplex by ∆d.
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2.2 Preferences and Uncertainty

We consider a setting with uncertainty.3 Let S be a finite set of possible states of the world,
and d be the number of states of the world, i.e., d :“ |S|.

Consequences are evaluated based on their monetary payoff in R`. The set of acts,
mappings from S Ñ R`, is denoted by Rd

`, and individual acts are denoted by f and g. We
endow this set with its natural topology.

Let ľ be a binary relation on Rd
`. As usual, we denote the strict part of ľ by ą, and

the associated indifference relation by „. We say that ľ is a (weakly monotone) preference
relation if it satisfies the following properties:

– (Weak Order): ľ is complete and transitive.

– (Continuity): The upper and lower contour sets are closed. That is for every f P Rd
`,

the sets tg : g ľ fu and tg : f ľ gu are closed.

– (Monotonicity): For all f, g P Rd
` if fpsq ě gpsq for all s P S, then f ľ g. Furthermore,

if fpsq ą gpsq for all s P S, then f ą g.

The space of such preference relations on Rd
` is denoted by P .

Given a preference ľ and an act f , the set tg : g ľ fu is called the upper contour set of
ľ at f . We say that a preference ľ is convex if its upper contour sets are convex, for all acts
f . Convexity jointly with the weak order property and continuity imply that the strict upper
contour set, denoted by U p0q

ľ :“ tg : g ą fu, is also convex. We refer to the space of convex
preferences by C Ă P .

Many well-known models in the theory of choice under uncertainty are special cases of
convex preferences. Examples are risk-averse subjective expected utility (SEU), max-min
expected utility (MEU: Gilboa and Schmeidler, 1989), Multiplier preferences (Hansen and
Sargent, 2001), variational preferences (Maccheroni et al., 2006), and smooth ambiguity
aversion (Klibanoff et al., 2005).

An approximate notion of upper contour sets is key to our results.

Definition 1 (ε-upper contour set). The approximate upper contour set of preference ľ at
the act f is defined by

U pεq
ľ pfq “

␣

g P Rd
` : p1´εqg ą f

(

.
3Using the reinterpretation of commodities in Debreu (1959), our results have implications for many other

economic environments. For example, the textbook version of the model assumes that consumption is in
units of physically distinct goods.
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By convexity and continuity of preferences the approximate upper contour set is a convex
and open subset. Its convexity is of particular importance to us, as our arguments often rely
on the hyperplane separation theorem.

Approximate optimality is often expressed by means of the ε-maximization of some
numerical objective function — a utility function u representing a preference ľ. Observe that
when ľ is homothetic (which is the case for many preferences used in applications), then u

may be taken to be homogenous of degree one. As a consequence, our notion of approximate
optimality translates directly into an approximation of utilities. Indeed, we may then write
U pεq

ľ pfq “
␣

g P Rd
` : p1´εqupgq ą upfq

(

.

2.3 Exchange Economies

The set of agents is denoted by I and a typical member is referenced by indices i, j, and k.
We assume throughout that I is finite.

An exchange economy is a mapping E : I Ñ PˆRd
`, where Epiq “ pľi, ωiq. Each agent

i P I is described by a preference relation ľi on Rd
`, as well as an endowment vector ωi P Rd

`.
In an exchange economy, we use U pεq

i to denote the upper contour set U pεq
ľi

.
Given an exchange economy E , the aggregate endowment is ω :“

ř

iPI ωi.4 A profile of
acts across agents, say f “ tfi : i P Iu P RdˆI

` , is called an allocation if
ř

iPI fi “ ω. The
space of all allocations is denoted by Fω.

Definition 2 (ε-Pareto optimality). An allocation f P Fω is called ε-Pareto optimal if there
is no allocation g P Fω such that gi P U pεq

i pfiq for all i P I.

In words, an allocation f in E is ε-Pareto optimal if there is no redistribution of the
aggregate endowment ω “

ř

i fi that would be strictly better for all agents, and that would
remain strictly better for all agents after a fraction ε of consumption is “shaved off” in each
state of the world. When ε “ 0, the definition coincides with the usual notion of weak Pareto
optimality. Further properties of the set of ε-Pareto optimal allocations are discussed in
Appendix A.

Definition 3 (Walrasian equilibrium). An allocation f “ tfi : i P Iu is called a Walrasian
equilibrium for the exchange economy E , if there exists a price vector p P Rd such that gi ąi fi

implies that p ¨ gi ą p ¨ ωi, and p ¨ fi “ p ¨ ωi, for every i P I.
4In the textbook Walrasian setting, ωpsq represents the total available amount of good s in the economy,

and in the Arrow-Debreu market it represents the total contingent amount that agents can receive in state s.
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An exchange economy is convex if each preference relation ľi is convex, i.e., ľiP C.
Convexity is required for the basic theory of general equilibrium: existence of Walrasian
equilibrium, as well as the second welfare theorem, relies on convex preferences. All of our
results, except Proposition 1 and Theorem 3, will also rely on convexity

When s ÞÑ
ř

iPI ωipsq is constant, we say that E exhibits no aggregate uncertainty. The
aggregate endowment is then same across all states of the world, i.e., ω “ pω̄, . . . , ω̄q.

3 Main Results

We proceed to state our main results, leaving a broader discussion our findings to Section 4,
and an overview of the methodology behind our proofs to Section 5.

3.1 Optimality and Equilibrium

Our first result is a generalization of the property that we discussed in the introduction. It
entails the following exercise: Fix a Walrasian equilibrium allocation, and draw a random
perturbation from a ball of radius r. Consider the event that this random perturbation, when
applied to any agent’s equilibrium consumption, results in contingent consumption that is
better by at least ε than their equilibrium consumption. The resulting event, that at least
one agent is made better off, has vanishingly small probability.

Theorem 1. Let E be a convex exchange economy. Suppose that there exists τ ą 0 such
that ωi ě τ1 for all i P I, and let f be a Walrasian equilibrium allocation. Fix r ą 0 and let
z „ Pr. Then for every ε ą 0,

Pr
pp1´εqpfi`zq ąi fi for some i P Iq ď e´ε2τ2d{8r2

. (3.1)

The proof of this theorem is in Section 5, as is the proof of the rest of the results we
provide in this section. To unpack the statement of the theorem, imagine an economy with
two consumers, I “ t1, 2u. If a random perturbation z P Bprq is also in pU pεq

1 pf1q´f1uqY

pU pεq

2 pf2q´tf2uq, then it means that either p1´εqpz`f1q provides a strict welfare improvement
for agent 1 over f1, or that p1´εqpz`f2q does this for agent 2 over f2 (or that both things
are true). If we take τ “ r and consider a 10% welfare improvement (ε “ 0.1), then the
probability of making at least one agent better off is at most e´d{800. If d is, say, the number
of stocks trading on the NASDAQ Exchange, then this bound is about 1 %.
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Remark 1. We can express Theorem 1 in terms of volumes. Specifically, the bound in (3.1)
is equivalent to

Vol
´

Ť

iPI

´

U pεq

i pfiq´tfiu

¯

X Bprq

¯

Vol pBprqq
ď e´ε2τ2d{8r2

. (3.2)

By the monotonicity of preferences, z ą 0, a perturbation that leaves an agent with
greater consumption state-by-state, is always a welfare improvement for any agent. Such a
perturbation has probability 1{2d, which also decreases exponentially in the number of states.
The “curvature” of agents’ preferences means, however, that many other perturbations should
also result in a welfare improvement — recall the dotted area in Figure 1. So the conclusion
in Theorem 1 may be surprising; it says that when the improvement is by a margin ε, the
scope for welfare improvements shrinks exponentially in d regardless of the shape of agents’
preferences, and even if we only ask for an improvement in one agent’s welfare.

As a consequence of Theorem 1, we obtain the statement that we discussed at length in
the introduction:

Corollary 1. Fix r ą 0 and let z „ Pr. Under the hypotheses of Theorem 1, for every ε ą 0,
and for each i P I,

Pr
pp1´εqpfi`zq ąi fiq ď e´ε2τ2d{8r2

. (3.3)

Equivalently, in terms of volumes, one has

Vol
´

U pεq

i pfiq X Bpfi, rq

¯

VolpBpfi, rqq
ď e´ε2τ2d{8r2

, @i P I . (3.4)

We should emphasize that we interpret volume as a uniform probability measure on the
ball of radius r, so that the statement in Corollary 1 corresponds to the informal description
we provided in the introduction. The volume of the ball itself shrinks exponentially in d, so
it is important to condition on the ball.

Observe that the message of Theorem 1 remains the same if we restrict attention to
perturbations z P Bpfi, rq for which p¨z ą p¨ωi. A consumption that is affordable cannot
provide an improvement in utility over fi, so it seems natural to consider only z that costs
more than i’s income at the equilibrium prices. This subset of Bpfi, rq contains half its
volume, so the message of Theorem 1 and Corollary 1 remains unchanged.

Our second result considers welfare improvements outside of equilibrium. An equilibrium
allocation must be Pareto optimal, but the Pareto set is strictly larger. So we ask about
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Figure 2: An illustration of Theorem 2

the possibility of a collective improvement after a change in aggregate consumption, starting
from an allocation that is a weak Pareto optimum.

In our next theorem, when we assume that there is no aggregate uncertainty, we normalize
the aggregate endowment to be ω “ p1, . . . , 1q “ 1.

Theorem 2. Let E be a convex exchange economy, with no aggregate uncertainty, and an
aggregate endowment of ω “ 1. Assume f is a weakly Pareto optimal allocation. For any
given ε ą 0, let Vpεq :“

ř

iPI U pεq

i pfiq be the Minkowski sum of the ε-approximate upper contour
sets. Fix r ą 0 and let z „ Pr. Then

Pr

˜

ÿ

iPI

fi`z P Vpεq

¸

ď e´ε2d{8r2
. (3.5)

Remark 2. Similar to the Theorem 1, we can offer a version of the above result in the
volume terms. Specifically, the bound in (3.5) is equivalent to

Vol
`

Vpεq X Bpω, rq
˘

VolpBpω, rqq
ď e´ε2d{8r2

. (3.6)

Figure 2 illustrates the concepts in the statement of Theorem 2. The figure depicts a
case with two states, s1 and s2, and two individual traders. For pictorial simplicity we take
ε “ 0 in the graphs. Aggregate consumption is ω, and entails no aggregate uncertainty. The
square defined by the origin and ω is an Edgeworth box that describes all the allocations
between the two agents. The Pareto optimal allocations are on the solid curve that connects
the origin and ω, while f “ pf1, f2q is a particular Pareto optimal allocation (indicated by the
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tangency of the two agents’ indifference curves at the point f , with the usual Edgeworth-box
convention that one agent’s coordinate system has been rotated 180˝ and its origin coincides
with ω). For the allocation f of the initial endowment ω, we may consider all the aggregate
consumptions that can be decentralized among the two agents so as to obtain higher utility
than in f . This set of aggregate bundles, the Scitovsky contour Vp0q, consists of all the
bundles to the north-east of the dashed curve passing through ω (a curve that, at ω, has the
same slope as the common slope of each individual agent’s utility at f).5

We want to study the Scitovsky contour Vp0q: understand and quantify how large it is.
When agents’ utilities are monotone, Vp0q is, of course, an infinite set, and has infinite volume
(Lebesgue measure; or area in the two-dimensional case). So we consider its volume relative
to a ball centered at ω. The exercise can be interpreted as follows: if we were to change
aggregate consumption by randomly shifting ω, what is the probability that we would end
up in the Scitovsky contour. In other words, if we perturb ω by randomly (and uniformly)
choosing a perturbation from the ball depicted in Figure 2, how likely is it that the resulting
aggregate consumption would make both traders better off.

The exercise amounts to calculating the volume of the dotted region shown on the right
of Figure 2. In the figure, the volume represents a significant fraction of the sphere centered
in ω. Less than 1{2, but not by much. So it is quite likely that a random perturbation would
make both agents better off. Theorem 2 says, however, that when ε ą 0 and the number of
states is large, this volume will be negligible. It converges to zero very quickly as the number
of states grows.

We shall reinterpret Theorem 2 in terms of Debreu’s coefficient of resource utilization (see
Debreu (1951)). To this end, consider an allocation f in an exchange economy E that is not
weakly Pareto optimal. This means that there is an alternative allocation of the aggregate
endowment in E that makes all agents strictly better off. In terms of the Scitovsky contour,
this means that the aggregate endowment ω “

ř

i ωi lies in the set Vp0q.
Debreu considers the minimum amount of aggregate resources (call it ω˚) that could be

used to provide agents with the same utility as in f , and thinks of the gap between ω and
ω˚ as the inefficiency inherent in the allocation f . In Debreu’s words, these are “nonutilized
resources.” He proposes to measure this gap by means of a “distance with economic meaning:”
p¨pω´ω˚q, where p is an “intrinsic price vector” associated with ω˚. To obtain a measure

5The Scitovsky contour is a key concept in the proof of the second welfare theorem. For further discussion
of this concept, see Debreu (1951) and Samuelson (1956).
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that is, in a sense, scale independent, he works with the ratio of p¨ω˚ to p¨ω. Prices p follow
from an argument that is analogous to the second welfare theorem; in particular, they are
not uniquely defined.

Debreu’s coefficient of resource utilization for an allocation f “ pf1, . . . , fnq is defined as:

CRUpfq :“ max
ω˚PBVp0q

ppω˚q¨ω˚

ppω˚q¨ω
,

where BVp0q consists of the minimal elements of the closure Vp0q of Vp0q (meaning there is no
smaller element in Vp0q), and ppω˚q is a supporting price vector at ω˚, what Debreu calls an
intrinsic price vector. Debreu (1951) shows that CRUpfq is well defined (in particular, that
it does not depend on the selection of prices ppω˚q), that it is a number in p0, 1s, and that
CRUpfq ă 1 when f is Pareto dominated.

Then we obtain, as a simple consequence of Theorem 2:

Corollary 2. Fix r ą 0 and let z „ Pr. Under the hypotheses of Theorem 2, if f is not
weakly Pareto optimal, and CRUpfq its coefficient of resource utilization, then

Pr

˜

ÿ

iPI

fi`z P Vp0q

¸

ď e´p1´CRUpfqq2d{8r2
.

Corollary 2 quantifies the meaning of the coefficient of resource utilization. Debreu
writes that one may think of CRUpfq as a percentage of national income, or GDP. But in
an economy with a large state space, even a seemingly large amount of inefficiency — as
measured by the coefficient of resource utilization — may not translate into a wide scope for
welfare improvements by changing aggregate consumption. To use the NASDAQ example
from before, a seemingly large inefficiency of 50% measured by the CRUpfq, translates into a
Corollary 2 bound of e´112, which is essentially zero. In words, despite a large inefficiency of
50%, the chance that a random perturbation could be distributed to make all agents better
off (not by some ε ą 0, just strictly better off) is essentially zero.

3.2 Prior Beliefs and Welfare-Improving Trade

Our third result concerns agents with multiple priors, and the size of the sets of prior beliefs
that they may posses. In Section 3.1, we quantified the upper contour sets of individual
agents and their sums. Here we instead follow Yaari (1969) to interpret a vector that supports
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the upper contour sets, at some contingent consumption, as a prior belief. We depend on a
relaxation of the equivalence between the existence of a common prior and Pareto efficiency
of an allocation. This equivalence has been studied in a number of previous works (e.g., Billot
et al., 2000; Ng, 2003; Rigotti et al., 2008; Gilboa et al., 2014; Ghirardato and Siniscalchi,
2018). We shall follow Rigotti et al. (2008) quite closely here.

We consider an exchange economy E with no aggregate uncertainty. Importantly, here on
we will not require convexity of preferences. The aggregate endowment is the same across all
states of the world: ω “ pω̄, . . . , ω̄q. We quantify the space of all allocations, denoted by Fω̄,
by the magnitude

ρ :“ 2ω̄´1 max
fPFω̄

ÿ

iPI

∥fi∥ . (3.7)

Yaari (1969) defines the subjective belief as a probability distribution vector that supports
the upper contour set. When the upper contour has a kink (due, for example, to the ambiguity
in preferences and its induced lack of differentiability), there will be multiple supporting
vectors. In the spirit of Rigotti et al. (2008), we define the subjective belief set as the set of
all supporting vectors. Specifically, let f be an act in Rd

`. The upper contour set of agent i

is tg : g ľi fu, and the subjective belief set at f is defined by

Bipfq “ tµ P ∆S : µ¨g ě µ¨f for all g ľi fu .

The set Bipfq is a convex and closed (hence compact) subset of the d-dimensional probability
simplex ∆S. One may also interpret a vector in Bipfq as the set of normalized prices that
support the consumption of the act f .6

Following our notation from before, we define the δ-extension of the subjective belief set
by

Bipfiq
δ :“ tν P ∆S : inf

µPBipfiq
∥ν´µ∥ ă δu .

Proposition 1. Let E be an exchange economy with preferences ľiP P for all i P I and
no aggregate uncertainty. Set δ “ ε{ρ. If the allocation f is ε-Pareto dominated, then
Ş

iPI Bipfiq
δ “ H.

In Proposition 1, we show that if an allocation is not approximately Pareto optimal
6The price interpretation is suitable for the exercise in Section 3.1, where we could have phrased our results

in terms of the Walrasian theory of general equilibrium where there is no uncertainty and S captures the
space of available consumption goods. Here we are more tightly following the story of uncertain consumption
in financial markets.
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(measured by the parameter ε), and thus there is room for welfare-improving trade, then the
δ-extension of the subjective belief sets share no common prior.

Remark 3. In Proposition 1, the extension of the subjective belief sets and the definition
of ρ in (3.7) are both with respect to the ℓ2 norm. However, one can readily generalize by
choosing an arbitrary p-norm for the belief sets, its conjugate q-norm for the definition of ρ,
and the proof follows analogously.

Leveraging this result, in the following theorem we examine the volume of the prior sets
as the dimension d grows large. Before we state the result, we need to introduce some further
notation. For a subset J Ď I, denote its complement by J c, and define BJpfJq :“

Ş

jPJ Bjpfjq.
We often drop the allocation f from the argument of subjective belief sets, when it is
understood from the context.

Theorem 3. Let E be an exchange economy with preferences ľiP P for all i P I and no
aggregate uncertainty. If the allocation f is ε-Pareto dominated, then there exists a constant
c ą 0, such that for every proper subset J Ă I,

min pVol pBJq , Vol pBJcqq

Vol p∆dq
ď

1
2 e´cε

?
d . (3.8)

Moreover, the constant c is universal: its value is independent of the primitives of the economy,
the dimension d and the parameter ε.

In particular, if in a two-agent economy, an allocation is not approximately Pareto optimal,
then the volume of the subjective belief set of at least one agent is exponentially smaller than
the volume of the probability simplex. Put differently, if there is a possibility for a strong
welfare-improving trade, then the subjective belief set of at least one agent must be “very
small.”

We interpret the theorem as saying that some degree of ambiguity neutrality is needed
for the existence of a welfare-improving trade. That agents have a small set of prior beliefs
seems to capture the idea of being ambiguity neutral, but the volume measure does not have
an obvious behavioral counterpart. We seek to provide such a behavioral interpretation in
Section 4.
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4 Discussion

4.1 Behavioral Implications of Theorem 3

In this section we study the behavioral implications of Theorem 3. For the purposes of this
discussion, we consider a setting with two agents. The message of our theorem is that, if
the current risk-sharing arrangement between the two agents is strongly Pareto dominated
(namely if there exists a possibility of a strongly welfare improving ex-ante trade), then the
volume of the underlying belief set of at least one agent must be very small. The smaller is
this volume, the closer is that agent to the ambiguity neutrality — a connection we seek to
quantify in this section.

It is well-established that ambiguity aversion leads to less trade. Theorem 3 offers a
quantitative expression of this result: that the possibility of an ε-Pareto improving trade
necessitates small ambiguity aversion in high dimensions.

This interpretation is in line with the comparative notion of ambiguity aversion proposed
by Ghirardato et al. (2004). Specifically, they show in the max-min setting of Gilboa and
Schmeidler (1989), the ambiguity aversion of a decision maker decreases as her multiple prior
set shrinks with respect to the set inclusion order.

To establish the connection between ambiguity aversion and the volume of the belief
set, we appeal to the max-min setting of Gilboa and Schmeidler (1989), in which there is a
convex compact set of priors Π Ď ∆S and the agent’s cardinal evaluation of an act f P Rd

`

is upfq “ minµPΠ f ¨ µ. We further assume that Π has constant width, namely the distance
between any distinct parallel supporting hyperplanes of Π (residing on the d dimensional
probability simplex) is constant.

One may define the level of ambiguity aversion by the difference between the maximum
and minimum expected utility of a normalized act f (i.e., ∥f∥2 “ 1) over Π, namely

θpfq :“ max
µPΠ

f ¨µ´min
µPΠ

f ¨µ .

When Π has constant width, θpfq becomes constant in f , and we write θpfq ” θ. Thus we
can take θ as a measure of ambiguity aversion. In the next proposition we show how the
upper bound on the relative volume in Theorem 3 means that θ vanishes as d Ñ 8.

Proposition 2. Under the conditions of Theorem 3, let Π coincide with the set of priors with
the smaller volume, and suppose that it has constant width θ. Then there exists a universal
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constant c ą 0 such that
θ ď 4 e´cε{

?
d
pd!q´1{2d . (4.1)

4.2 On the Magnitude of ε

The interpretation of our results depends on the magnitude of two numbers: the number of
states d, and the fraction ε accounted for in a utility improvement. When d is large while ε

remains constant, the volumes discussed in Theorems 1 and 2 shrink to zero. So one could
question our interpretation by arguing that we should use a small value of ε when the number
of states d is large. In particular, one might argue that we should impose that ε “ Op1{

?
dq.

We would disagree, however, essentially because we think of ε as a dimension-free fraction.
First, ε is expressed as a fraction of physical units of stage-contingent consumption. If we

think that fpsq, for an act f , is a monetary payment, then ε is a percentage of a monetary
payment. It seems odd to impose a smaller percentage in monetary terms when the number
of states is large than when it is small. For example, if we identify states with the number of
assets in a market: is the meaning of a 5% return different in a market with many assets
than in a market with few assets? If we instead consider ∥ω∥ to be a measure of the “size” of
the economy, then we may want to impose a value of ε that represents a constant fraction
of ∥ω∥. For example, with the assumption that ω “ 1 we have ∥ω∥ “

?
d. Of course, the

resulting ε would then grow with d, and only strengthen our results.
Second, taking ε “ Op1{

?
dq is problematic because it seems very hard to reconcile with

the common practice of using a numerical objective function in calculating approximately
optimal outcomes. As we discussed above, many applications make use of a homothetic
preference and a resulting utility function that is homogenous. Examples include the max-min
representation in choice under uncertainty, or the Cobb-Douglas utility in consumer choice.
In this case, the ε equals that tolerance level assumed in the agents’ maximization problem:
the number ε is then measured in “utils,” the same unit of account as used for the utility
function. Utils are, however, dimension free. In a model with many states of the world, we
would hardly be allowing for any relaxation in our notion of approximate optimality.

Finally, we should emphasize the reinterpretation of our results using the coefficient of
resource utilization (see Corollary 2). The CRU is usually thought of as a fraction of national
income, also a dimension free measure, and one that one might expect is constant, or even
grow, with the size of the economy.

17



5 Methodology and Proofs

At a high level, the primary concept underpinning our proofs is that in high-dimensional
metric spaces, and under relatively mild conditions, probability measures tend to concentrate.
As a result, for a probability measure µ and a subset A that encompasses at least half of the
probability space, namely µpAq ě 1{2, the metric extension Aδ “ tz : distpz, Aq ă δu covers a
substantial portion and growing of the unit measure. In particular, the complement 1´µpAδq

diminishes rapidily, often exhibiting exponential decay with respect to the dimension d.
These types of concentration bounds are commonly referred to by Isoperimetric inequalities.
Their importance lie on the independence of the concentration rate from the set A. The
source of our results, that certain welfare improvements have a vanishingly small probability,
independently of the shape of the agents’ preferences, can be traced to basic results in the
theory of Isoperimetric inequalities and concentration of measure.

A consequence of the uniform concentration of measure is that, if two subsets A and B

are separated with a positive distance, then as the dimension d grows, the measure of at
least one of them must be exponentially small. We apply this basic idea in the proofs of our
results.

In the following, we begin by introducing the core inequality in concentration of measure:
Brunn-Minkowski. Then, we apply a variant of this inequality to prove Theorems 1 and 2.
Followed by that, we present the preliminaries of Isoperimetric inequalities, and employ them
to prove Theorem 3.

5.1 Brunn-Minkowski Inequality

For two subsets A, B Ď Rd, their Minkowski sum is defined by A`B “ ta`b : a P A, b P Bu.
The Brunn-Minkowski Inequality provides a crucial connection between volumes and Minkowski
sum in Euclidean spaces.

Let A and B be two non-empty compact subsets of Rd. The Brunn-Minkowski inequality
claims that

VolpA`Bq
1{d

ě VolpAq
1{d

`VolpBq
1{d . (5.1)

If one makes the additional assumption that A and B are restricted to convex subsets, then
the inequality binds if and only if A and B are homothetic (that is one is the translated and
scaled version of another). This inequality implies the concavity of the volume operator with
respect to the Minkowski sum. There is a dimension-free version of this inequality that often
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proves more useful. In particular, for λ P r0, 1s, inequality (5.1) implies that

VolpλA`p1´λqBq
1{d

ě λVolpAq
1{d

`p1´λqVolpBq
1{d .

Applying the arithmetic geometric inequality to the above provides the following dimension-
free version:

VolpλA`p1´λqBq ě VolpAq
λ VolpBq

1´λ . (5.2)

We henceforth refer to this inequality by BM inequality. A useful application of BM is the
following lemma: Expressing an upper bound for the minimum volume of two positively
distanced subsets (its proof can be found in Artstein-Avidan et al. (2015), but we also state
it for completeness).

Lemma 1. Assume A and B are Borel subsets of Bprq, and distpA, Bq ě δ. Then,

mintVolpAq, VolpBqu

VolpBprqq
ď e´δ2d{8r2

. (5.3)

Proof. Since the volume of any Borel set can be approximated arbitrarily close by the inner
measure of its closed subsets, we can assume without any loss that A and B are closed and
hence compact. By the parallelogram law for the ℓ2-norm if a P A and b P B then

∥a`b∥2
“ 2∥a∥`2∥b∥2

´∥a´b∥2
ď 4r2

´δ2 ,

where the inequality holds because a, b P B and ∥a´b∥ ě δ. Hence, it follows that

A`B

2 Ď

c

1´
δ2

4r2 Bprq ,

and therefore,

Vol
ˆ

A`B

2

˙

ď

ˆ

1´
δ2

4r2

˙d{2

VolpBprqq ď e´δ2d{8r2 VolpBprqq .

Setting λ “ 1{2 in (5.2) and using the above inequality justify the claim in (5.3).

Therefore, as the dimension grows, two subsets in the ℓ2 ball with a bounded radius, will
have positive distance from each other only if at least one them has a very small volume. Of
course, the larger is the distance, the smaller would be the implied volume.
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5.2 Proof of Results in Section 3.1

We proceed with the proof of our first two theorems. In both cases, using the optimality or
the equilibrium property of the allocation, we apply a type of convex separation argument.
In the first theorem, the separation is provided by the given equilibrium price. While in the
second theorem, the separation argument follows the idea used in the proof of the second
welfare theorem. Consequently, as we argue below, the approximate versions of upper contour
sets stay at a positive distance from their separating counterpart. An application of Lemma 1
on appropriately chosen subsets imply the volume bounds in Theorems 1 and 2.

We begin by laying down some terminology. For a vector p P Rd and a constant b, we
define two half-spaces:

H`
pp ; bq :“

␣

x P Rd : p ¨ x ě b
(

,

H´
pp ; bq :“

␣

x P Rd : p ¨ x ď b
(

,

that are, respectively, called upper and lower half-spaces. One can readily verify that the ℓ2

distance between the two half-spaces H`pp ; b2q and H´pp ; b1q, where b2 ą b1, is equal to

dist
`

H`
pp ; b2q, H´

pp ; b1q
˘

“
b2´b1

∥p∥
. (5.4)

Proof of Theorem 1. Since f “ tfi : i P Iu is a Walrasian equilibrium allocation in E , and
preferences are monotone, there exists a price vector p P Rd

` such that p ¨ gi ą p ¨ ωi for all
i P I and gi P U p0q

i pfiq. Next, observe that if g P U pεq

i pfiq then p1´εqg P U p0q

i pfiq and therefore
p¨pp1´εqpg´ωiq´εωiq ą 0. This in turn implies that

p ¨ pg´ωiq ą
εp ¨ ωi

1´ε
ą εp ¨ ωi ě ετ∥p∥1 ,

where the last inequality holds because p P Rd
` and ωi ě τ1. Therefore, since i P I and

g P U pεq

i pfiq were arbitrary, by the above inequality U pεq

i pfiq´tωiu Ď H` pp; ετ∥p∥1q for all
i P I. Let us define Q :“

Ť

iPI

´

U pεq

i pfiq´tωiu

¯

.7 Then Q Ď H` pp; ετ∥p∥1q, so for an
arbitrary r ą 0, one has

dist
`

QXBprq, H´
pp; 0qXBprq

˘

ě dist
`

H`
pp; ετ∥p∥1qXBprq, H´

pp; 0qXBprq
˘

ě dist
`

H`
pp; ετ∥p∥1q , H´

pp; 0q
˘

“ ετ
∥p∥1

∥p∥
ě ετ .

7The set Q was originally used by Debreu and Scarf (1963) to prove core convergence, and by Barman
and Echenique (2023) to characterize approximate Walrasian equilibria.
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The equality above follows from (5.4), and the last inequality holds because minp‰0∥p∥1{∥p∥2 “

1, namely the minimum of ∥p∥1{∥p∥2 is achieved on the standard unit basis vectors, and
is equal to 1. Now set A :“ QXBprq and B :“ H´pp; 0qXBprq. By the above inequality
distpA, Bq ě ετ . Since p is a nonzero vector in Rd

`, the subset B covers at least half of the
volume of Bprq. So it must be that VolpAq ď VolpBq. Therefore, Lemma 1 implies that
VolpAq{VolpBprqq ď e´ε2τ2d{8r2 , namely:

Vol pQ X Bprqq

VolpBprqq
ď e´ε2τ2d{8r2

,

and thereby
Vol

´

Ť

iPI

´

U pεq

i pfiq´tωiu

¯

X Bprq

¯

Vol pBprqq
ď e´ε2τ2d{8r2

.

Now observe that if f “ tfi : i P Iu is a Walrasian equilibrium for the exchange economy E , it
is also a Walrasian equilibrium for the exchange economy E 1 that is identical to E except that
each agent i’s endowment is ω1

i “ fi. Therefore, we can replace ωi in the above inequality
with fi, and obtain the volume bound in (3.2) that is equivalent to (3.1).

Proof of Corollary 1. Because of the union bound and (3.1) one has

Vol
´´

U pεq

i pfiq´tfiu

¯

X Bprq

¯

Vol pBprqq
ď e´ε2τ2d{8r2

, @i P I .

Since the volume is translation invariant, we can shift the subsets in the above inequality by
fi and thus achieve the bound in (3.4) and thereby (3.3).

Proof of Theorem 2. Since f “ tfi : i P Iu is weakly Pareto optimal, then there is no
allocation g P F1 such that gi ąi fi for every i P I. That is F1X

ś

iPI U p0q

i pfiq “ H. That in
turn means the normalized endowment vector ω “ 1 is disjoint from Vpεq :“

ř

iPI U pεq

i pfiq

for all ε ě 0. Since preferences are convex the approximate upper contour sets are convex,
so is their sum Vpεq. Therefore, by the hyperplane separation theorem and monotonicity of
preferences there exists a nonzero vector p P Rd

` such that p¨v ě p¨1 “ ∥p∥1 for all v P Vp0q.
That is 1 P H´pp; ∥p∥1q and Vp0q Ď H`pp; ∥p∥1q.

Now suppose v P Vpεq. Then, there are gi P U pεq

i for all i P I, such that v “
ř

iPI gi and
p1´εqgi ąi fi . For each i P I, it holds that p1´εqgi P U p0q

i and hence p1´εq
ř

iPI gi P Vp0q.
Consequently, one has p¨p1´εqv ě ∥p∥1. That, in turn, implies v P H` pp; ∥p∥1{p1´εqq, and
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thereby Vpεq Ď H` pp; ∥p∥1{p1´εqq. As a result of this set inclusion, for an arbitrary r ą 0,
one obtains that

dist
`

Vpεq
XBp1, rq , H´

pp ; ∥p∥1qXBp1, rq
˘

ě

dist
ˆ

H`

ˆ

p ; ∥p∥1

1´ε

˙

XBp1, rq , H´
pp ; ∥p∥1qXBp1, rq

˙

“ dist
ˆ

H`

ˆ

p ; ∥p∥1

1´ε

˙

, H´
pp ; ∥p∥1q

˙

,

where the equality holds because the two half-spaces are parallel. Their distance by (5.4) is
equal to ε∥p∥1{p1´εq∥p∥. Therefore, we arrive at

dist
`

Vpεq
XBp1, rq , H´

pp ; ∥p∥1qXBp1, rq
˘

ě
ε∥p∥1

p1´εq∥p∥
ě ε ,

where the last inequality follows as before, because minp‰0∥p∥1{∥p∥2 “ 1. Now set A :“ VpεqX

Bp1, rq and B :“ H´pp ; ∥p∥1qXBp1, rq. By the above inequality one has distpA, Bq ě ε. Since
p is a nonzero vector in Rd

`, the subset B covers at least half of the volume of Bp1, rq. So it must
be that VolpAq ď VolpBq. Therefore, Lemma 1 implies that VolpAq{VolpBp1, rqq ď e´ε2d{8r2 ,
thus proving the volume bound (3.6) that is equivalent to (3.5).

Proof of Corollary 2. Let β :“ CRUpfq. Since f is not weakly Pareto optimal, then
β ă 1. By Debreu (1951), one has βω P BVp0q. Thus, ω is a minimal element of the closure of
β´1Vp0q. Observe that for every i, one has

1
β

U p0q

i pfiq “ U p1´βq

i pfiq .

Therefore β´1 Vp0q “ Vp1´βq, and ω becomes a minimal element of Vp1´βq as well. This
fact, in turn, means that f is p1´βq-Pareto optimal. Thus the corollary now follows from
Theorem 2.

5.3 Concentration and Isoperimetric Inequalities

Isoperimetric inequalities provide lower bounds for the surface measure of Borel subsets.
Specifically, suppose µ is a given probability measure on Rd, and let A Ă Rd be a Borel
subset, whose δ-extension is denoted by Aδ “ A`δB. Then, the Minkowski content (denoted
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by µ`) of the subset A relative to the measure µ is defined by

µ`
pAq :“ lim inf

δÑ0

µpAδq´µpAq

δ
. (5.5)

Given this definition, we can think of µ`pAq as the area measure of the boundary of A.
Among subsets with measures in a certain range, the Isoperimetric function Iµ : r0, 1{2q Ñ

R` returns the Minkowski content of the subset with the smallest boundary area. Formally,
it is defined by

Iµpaq :“ inf
1{2ăµpAqď1´a

µ`
pAq . (5.6)

In many environments, where the probability measure satisfy some mild regularity conditions,
there exist universal lower bounds for the Isoperimetric function. One particular case that is
of interest to us is the following lemma.

Lemma 2 (Barthe and Wolff (2009)). Let u be the uniform measure on the probability simplex
∆d. That is upAq “ AreapAq{Areap∆dq, for every A Ď ∆d. Then, there exists a universal
constant c ą 0 such that for a P r0, 1{2q:

Iupaq ě c a d . (5.7)

In the following, we use up¨q to refer to the uniform measure on ∆d. As a corollary of the
previous lemma we show that if a subset covers at least half of the measure on ∆d, then the
measure of its δ-extension is very close to 1.

Corollary 3. Assume upAq ě 1{2, then

upAδ
q ě 1´

1
2 e´cδd . (5.8)

Proof. Because of the definition of the Minkowski content in (5.5) and the Isoperimetric
function in (5.6) — both based on the limit inferior — one obtains

upAδ
q ě upAq`

ż δ

0
upAt

q dt

ě upAq`

ż δ

0
Iup1´upAt

qq dt

ě upAq`cd

ż δ

0

`

1´upAt
q
˘

dt ,
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where the third inequality follows from (5.7). Define zp0q :“ upAq, and let z : r0, δs Ñ R be
the solution to the following integral equation:

zpδq “ zp0q`cd

ż δ

0
p1´zptqq dt .

Grönwall’s inequality implies that upAδq ě zpδq. One can simply verify that zpδq “ 1´

pp1´zp0qq e´cδd, and this establishes the claim in (5.8).

An important consequence of this result, that lies at the core of the proof of Theorem 3,
is that if two subsets in ∆d have positive distance from each other, then the area of at least
one of them must be exponentially smaller than Areap∆dq. Intuitively, this resembles the
separation argument in Lemma 1, although its proof is not a direct consequence of the BN
inequality, and follows from the more elaborate construct of the aforementioned Isoperimetric
lower bound.

Lemma 3. Assume A and B are two Borel subsets of ∆d, where AδXBδ “ H. Then, there
exists a universal constant c ą 0 such that:

mintupAq, upBqu ď
1
2 e´cδd . (5.9)

Proof. Without any loss we shall assume that upAδq ď upBδq. Since Aδ XBδ “ H, then
upAδq`upBδq ď 1. Hence the measure of the complement of Aδ is greater than or equal
to 1{2, i.e., up∆dzAδq ě 1{2. We claim that A Ď ∆d z r∆d z Aδsδ, which is equivalent to
∆d z A Ě r∆d z Aδsδ. To show the latter, pick any point x P r∆d z Aδsδ. Recall that we defined
the δ-extension with strict inequality, hence, distpx, ∆d z Aδq ă δ. Since Aδ is an open subset,
then ∆d z Aδ is compact, and thus there exists y P ∆d z Aδ such that

∥x´y∥ “ distpx, ∆d z Aδ
q ă δ .

On the other hand, y P ∆d z Aδ implies that distpy, Aq ě δ. The previous two inequalities
imply that x R A, and hence our claim is verified. Therefore, we have upAq ď 1´u

`

r∆d z Aδsδ
˘

.
Since u

`

∆d z Aδ
˘

ě 1{2, Corollary 3 implies that

u
`

r∆d z Aδ
s
δ
˘

ě 1´
1
2 e´cδd ,

thereby verifying the inequality in (5.9).
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5.4 Proof of Results in Section 3.2

Proposition 1 implies that if an allocation is ε-Pareto dominated, then the extension of the
subjective belief sets have empty intersection. Hence, any arbitrary split of the agents’ index
set I into two groups results into two subsets whose extensions have empty intersection as
well. Thus, we can employ Lemma 3 to conclude that at least one of these subsets should
have a small volume.

Proof of Proposition 1. Assume towards a contradiction that
Ş

iPI Bipfiq
δ ‰ H, while f is

ε-Pareto dominated. Choose η P
Ş

iPI Bipfiq
δ. Since f is ε-Pareto dominated, there is g P Fω̄

such that p1´εqgi ąi fi for all i. By definition of the subjective belief set, and continuity one
obtains that µi¨

“

p1´εqgi´fi

‰

ą 0 for all µi P Bipfiq. Choose µ̃i P arg mint∥η´µi∥ : µi P Bipfiqu.
Observe that ∥η´µ̃i∥ ă δ, hence

ˇ

ˇη¨
“

p1´εqgi´fi

‰

´µ̃i¨
“

p1´εqgi´fi

‰
ˇ

ˇ ď ∥η´µ̃i∥∥gip1´εq´fi∥ ă δ∥p1´εqgi´fi∥ .

Therefore, it holds that

η¨
“

p1´εqgi´fi

‰

ą µ̃i¨
“

p1´εqgi´fi

‰

´δ∥p1´εqgi´fi∥ ą ´δ∥p1´εqgi´fi∥ ,

where the last inequality follows because µ̃i¨
“

gip1´εq´fi

‰

ą 0. Summing over all i’s leads to

η¨

n
ÿ

i“1

“

p1´εqgi´fi

‰

ą ´δ
n
ÿ

i“1
∥p1´εqgi´fi∥ ě ´δω̄ρ “ ´εω̄ .

Since both f and g belong to Fω̄, the left most side above is equal to ´εω̄, thus leading to a
contradiction.

Proof of Theorem 3. By Proposition 1, if f is ε-Pareto dominated, then
Ş

iPI Bipfiq
δ “ H.

For an arbitrary J Ă I, one can readily verify that Bδ
J Ď

Ş

jPJ Bjpfjqδ. Therefore, Bδ
J XBδ

Jc “

H. Applying Lemma 3 implies the conclusion in (3.8).
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A Remaining Proofs

Continuity of the Approximate Pareto Correspondence

Fix an exchange economy E and denote the set of all ε-Pareto optimal allocations by P pεq. The
subset P pεq is evidently increasing with respect to the set inclusion order: P pε1q Ď P pε2q for
ε1 ď ε2. Using continuity and monotonicity of preferences, we show that the correspondence
P : r0, 1s ↠ RdˆI

` is upper-hemicontinuous on r0, 1s and continuous at ε “ 0. This means as
ε Ñ 0 the subset P pεq “approximates” the space of weakly Pareto optimal allocations.

Proposition A.1. The correspondence P : r0, 1s ↠ RdˆI
` is upper-hemicontinuous.

Proof. Let εk Ñ ε, f pkq P P pεkq. Since Fw is a compact subset of RdˆI
` , then f pkq has a limit

point, i.e., Df P Fw such that the subsequence f pkmq Ñ f as m Ñ 8. To avoid clutter, we
denote the indices of this subsequence by k instead of km. To justify the upper-hemicontinuity,
we need to show that f P P pεq. Since f pkq Ñ f , then

řn
iPI∥f

pkq

i ´fi∥ Ñ 0, that in turn implies
f

pkq

i Ñ fi uniformly over i P I. Now assume by contradiction that f R P pεq. Then, there
exists g P Fw such that p1´εqgi ąi fi for all i P I. Since preferences are continuous (A2),
there exists a k̄ such that p1´εqgi ąi f

pkq

i for all k ě k̄ and for all i P I. Because of continuity
again, for each i there exists ε̂i ą 0, such that p1´ε´ε̂iqgi ąi f

pkq

i for all k ě k̄. Let
ε̂ :“ miniPI ε̂i, then because of monotonicity (A3) one has p1´ε´ε̂qgi ąi f

pkq

i for all k ě k̄.
Pick k0 “ mintk ě k̄ : εk ď ε`ε̂u. Since εk Ñ ε, then k0 is finite. Observe that the previous
statement implies that f pk0q is not εk0-Pareto optimal. Thus, the contradiction is reached
and hence f must belong to P pεq.

Corollary A.1 (Continuity at ε “ 0). Suppose εk Ñ 0 and f pkq P P pεkq. Then, there exists a
subsequence tf pkmqu that converges to a weakly Pareto optimal allocation f . This is resulted
from the upper hemicontinuity of P p¨q at ε “ 0. Conversely, the correspondence is clearly
lower-hemicontinuous at ε “ 0, because every weakly Pareto optimal allocation is in fact
ε-Pareto optimal.

Proof of Proposition 2

Since Π is a d´1 dimensional surface with constant width, then Schramm (1988) implies that

VolpΠq ě

˜

c

3`
2
d

´1
¸d´1

Vol
`

Bd´1
p0, θ{2q

˘

ě

´?
3´1

¯d´1
ˆ

θ

2

˙d´1

Vol
`

Bd´1˘ .
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By Theorem 3 one has VolpΠq ď 1
2 e´cε{

?
d Volp∆dq, therefore the above inequality leads to

ˆ

θ

2

˙d´1

ď
e´cε

?
d

2
`?

3´1
˘d´1

Volp∆dq

Vol pBd´1q
.

The volume of the d´1 dimensional unit ℓ2 ball and the d´1 dimensional probability simplex
∆d are respectively equal to VolpBd´1

2 q “ πpd´1q{2{Γ
`

d`1
2

˘

and Volp∆dq “
?

d{Γpdq. Therefore,

ˆ

θ

2

˙d´1

ď

?
d e´cε

?
d

2
`?

π
`?

3´1
˘˘d´1

Γ
`

d`1
2

˘

Γpdq
.

Since the Gamma function is log-convex, then Γ
`

d`1
2

˘

ď
a

Γpdq “
a

pd´1q!. Hence the
above inequality simplifies to

ˆ

θ

2

˙d´1

ď
d e´cε

?
d

2
`?

π
`?

3´1
˘˘d´1

1
?

d!
.

Let us denote
?

π
`?

3´1
˘

by α. Since the width θ is smaller than 2, then pθ{2qd ď pθ{2qd´1

and thus

θ ď
2
α

ˆ

αd

2

˙1{d

e´cε{
?

d
pd!q´1{2d .

We can readily verify that 2
α

`

αd
2

˘1{d
ď 4 for all integers d, thereby proving the inequality (4.1).

References

[1] Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali D. Milman (2015). Asymptotic
Geometric Analysis, Part I, volume 202, American Mathematical Society.

[2] Siddarth Barman and Federico Echenique (2023). “The Edgeworth Conjecture with
Small Coalitions and Approximate Equilibria in Large Economies,” Mathematics of
Operations Research, 48(1): 313–331.

[3] Franck Barthe and Paweł Wolff (2009). “Remarks on Non-Interacting Conservative Spin
Systems: the Case of Gamma Distributions,” Stochastic Processes and their Applications,
119(8): 2711–2723.

27



[4] Antoine Billot, Alain Chateauneuf, Itzhak Gilboa, and Jean-Marc Tallon (2000). “Sharing
Beliefs: Between Agreeing and Disagreeing,” Econometrica, 68(3): 685–694.

[5] Gerard Debreu (1951). “The Coefficient of Resource Utilization,” Econometrica: 273–292.

[6] ——— (1959). Theory of Value: An axiomatic Analysis of Economic Equilibrium,
volume 17, Yale University Press.

[7] Gerard Debreu and Herbert Scarf (1963). “A Limit Theorem on the Core of an Economy,”
International Economic Review, 4(3): 235–246.

[8] Paolo Ghirardato, Fabio Maccheroni, and Massimo Marinacci (2004). “Differentiating
Ambiguity and Ambiguity Attitude,” Journal of Economic Theory, 118(2): 133–173.

[9] Paolo Ghirardato and Marciano Siniscalchi (2018). “Risk Sharing in the Small and in
the Large,” Journal of Economic Theory, 175: 730–765.

[10] Itzhak Gilboa, Larry Samuelson, and David Schmeidler (2014). “No-Betting-Pareto
Dominance,” Econometrica, 82(4): 1405–1442.

[11] Itzhak Gilboa and David Schmeidler (1989). “Maxmin Expected Utility with Non-Unique
Prior,” Journal of Mathematical Economics, 18(2): 141–153.

[12] Lars Peter Hansen and Thomas J. Sargent (2001). “Robust Control and Model Uncer-
tainty,” American Economic Review, 91(2): 60–66.

[13] Peter Klibanoff, Massimo Marinacci, and Sujoy Mukerji (2005). “A Smooth Model of
Decision Making under Ambiguity,” Econometrica, 73(6): 1849–1892.

[14] Fabio Maccheroni, Massimo Marinacci, and Aldo Rustichini (2006). “Ambiguity Aversion,
Robustness, and the Variational Representation of Preferences,” Econometrica, 74(6):
1447–1498.

[15] Man-Chung Ng (2003). “On the Duality Between Prior Beliefs and Trading Demands,”
Journal of Economic Theory, 109(1): 39–51.

[16] Luca Rigotti, Chris Shannon, and Tomasz Strzalecki (2008). “Subjective Beliefs and Ex
ante Trade,” Econometrica, 76(5): 1167–1190.

28



[17] Paul A. Samuelson (1956). “Social Indifference Curves,” The Quarterly Journal of
Economics, 70(1): 1–22.

[18] Oded Schramm (1988). “On the Volume of Sets Having Constant Width,” Israel Journal
of Mathematics, 63: 178–182.

[19] Menahem E. Yaari (1969). “Some Remarks on Measures of Risk Aversion and on their
Uses,” Journal of Economic Theory, 1(3): 315–329.

29


	Introduction
	The Model
	Notations and Conventions
	Preferences and Uncertainty
	Exchange Economies

	Main Results
	Optimality and Equilibrium
	Prior Beliefs and Welfare-Improving Trade

	Discussion
	Behavioral Implications of Theorem 3
	On the Magnitude of .

	Methodology and Proofs
	Brunn-Minkowski Inequality
	Proof of Results in Section 3.1
	Concentration and Isoperimetric Inequalities
	Proof of Results in Section 3.2

	Remaining Proofs

