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Abstract

We consider a setting in which an impatient agent acquires payoff-relevant infor-

mation about the true state of the world. The agent endogenously chooses when to

stop learning, at which point an uninformed principal takes an action to maximize

her own expected payoff. The agent’s preferences are biased relative to the principal’s,

generating misalignment of expected payoffs. When communication is non-credible, the

principal can only rely upon the agent’s endogenous stopping rule when strategically

specifying her course of action. In the no-communication equilibrium, the agent adopts

a one-sided stopping rule as a function of her posterior belief that is consistent with

the principal’s pre-specified course of action at the time of stopping. When the princi-

pal has commitment power, relative to the full-communication equilibrium, the agent

is always worse off; for intermediate values of prior beliefs, the principal is better off.

The one-sided equilibrium stopping rule (and associated action) can switch discretely

as a function of prior beliefs, generating dramatic regime changes for arbitrarily small

changes in beliefs. When learning is initiated in the no-communication equilibrium there

is a non-zero probability of indefinite delay, in which the agent never ceases learning

and the principal never takes an action.
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1 Introduction

In many economic interactions with private information, the agent with superior knowledge
often acquires such information over time and with increasing confidence. In such settings,
the timing of when the agent approaches a counter-party responsible for taking a payoff-
relevant action may be dependent as much upon what the agent has learned as when he has
learned it.

Consider the canonical example of the used car market. By virtue of owning, driving,
and maintaining his car, the seller likely has greater information about its quality than any
potential buyer.1 Yet, this superior knowledge is not acquired instantaneously upon initial
purchase of the car. Rather, it takes time for any new owner of a car to learn about its
long-term quality. This learning process may never fully cease so long as the seller owns the
car, even as his confidence about the quality of his car improves over time.

Of course, the timing of when an owner of a car decides to sell his car is not random—it
likely depends upon both the market price for the used car as well as the confidence the seller
has in its underlying quality. Moreover, while the potential buyer of a car may not observe
the posterior belief of the seller at the time of sale, the buyer nevertheless is aware that the
seller has chosen to sell the car after having spent some time learning about the car’s quality.
This latter feature of the economic exchange raises a novel question as it relates to economic
interactions with private information: How does the time-dependence of the learning process
and the endogeneity of when the economic interaction takes place determine the equilibrium
strategies employed by both principal and agent?

The economic forces we analyze in this paper manifest themselves in other settings as well,
such as in the following example. In advanced economies, large firms with already established
sources of revenue nevertheless devote considerable financial resources to R&D activities. In
such large and complex organizations, those making the decision for whether an innovation is
ultimately developed further oftentimes delegate the R&D process to subordinate, research
employees.

The R&D employee likely has a preference for early resolution of the research process,
as opposed to the firm, which is much less dependent upon any particular idea for survival.
Moreover, the research employee’s preferences may not be perfectly aligned with that of his
managers if, for example, private benefits accrue to him in the event that the product line

1This is, of course, the motivation articulated in Akerlof (1970) for studying the implications of asymmetric
information in economic interactions. Akerlof writes: “After owning a specific car, however, for a length of
time, the car owner can form a good idea of the quality of this machine”
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enhancement is ultimately adopted. But otherwise, he likely has a vested interest in the
viability and profitability of the product line enhancement.

Together, these forces determine when the research employee optimally concludes his
research. When he does, he submits a report to his superiors, who then make a decision
about whether the idea is developed further. In light of this example, our paper has two
surprising and interesting results: (i) For a certain range of prior beliefs about the quality
of R&D projects, the firm’s managers prefer to ignore the informational content of the re-
port by their subordinates—relying instead on the endogenous arrival of reports (which, in
turn, disciplines idea quality of submitted reports in equilibrium); (ii) In some cases, minor
changes in the prior belief over idea quality can, in the non-credible communication case,
produce a sharp regime change in which the types of reports submitted in equilibrium switch
from being those believed to be low quality to those believed to be high quality. As such,
the firm’s managers correspondingly adjust their equilibrium action from low to high.

Contributions. The examples outlined in the introduction provide clear motivation for
the general problem we investigate in this paper. Here, we briefly discuss the set-up of the
problem and the contributions our paper makes.

We study a principal agent problem in which the principal (she) delegates the task of
learning about the payoff relevant state of the world, θ, to the agent (he). Both the principal
and the agent share a common prior belief, π, about θ; however, the agent has access to a
technology which allows him to acquire information over time about the likely payoff relevant
state of the world. Naturally, the longer the agent spends learning, the more precise is his
estimate of θ.

When the agent stops learning about θ, he delivers a report to the principal, who then
updates her belief about the likely state of the world. Given how we set up the problem,
the principal’s optimal action is exactly her posterior belief about θ. The principal does not
discount the future and is thus willing to delay her action until the agent (optimally) stops
learning and delivers his report.

The strategic dimension of the problem arises from two salient differences in preferences
between the agent and the principal. First, the agent receives a private benefit simply from
delivering the project to the principal. The magnitude of this private benefit helps determine
how willing the agent is to devote time to learning about θ as opposed to immediately sending
a report to the principal. Second, the agent’s preferences are biased upwards relative to the
principal’s—for any belief about the true state of the world, the agent would prefer the
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principal to take a higher action than what is Bayes-rational for the principal. This tension
of preferences can be embedded in the communication framework of Crawford and Sobel
(1982).

For this problem, we study two extreme communication environments: full communica-
tion and no communication. By doing so, we sidestep issues related to strategic communi-
cation. In the former, the full-communication game, the agent truthfully communicates his
posterior belief to the principal after devoting some time to learning about θ. Based on the
agent’s report, the principal takes the action which maximizes her own expected utility.

How long the agent spends learning depends upon the action taken by the principal.
Anticipating the principal’s optimal action, the agent knows precisely his exit value at the
time of stopping. He thus solves an optimal stopping time problem. The unique Markov
perfect equilibrium entails the agent continuing the learning process for intermediate values of
his continuously updated posterior belief (the continuation region is symmetric around 1/2);
the agent stops learning when his posterior belief hits either the upper or lower boundary
of the continuation region, both of which are in the interior of the unit interval.2 Because
the agent truthfully communicates his posterior belief when learning ceases, a high level of
π is matched with a high action (1− αc) by the principal; a low posterior belief is similarly
mapped to a low action αc. This equilibrium requires that the agent’s solution to the optimal
stopping time problem be consistent with the induced action of the principal.

A more interesting situation arises when credible communication between the parties is
infeasible or prohibitively costly. The lack of formal communication induces, for both parties,
a strategic reliance upon the optimal stopping time problem faced by the agent to discipline
equilibrium actions. While communication, per se, does not occur, the equilibrium features
ex post revelation of the agent’s posterior belief at the time that the agent stops the learning
process.

The solution concept we use is the Markov perfect equilibrium. The equilibrium profile
features a one-sided continuation set C chosen by the agent; when the posterior belief remains
in this set he finds it optimal to continue learning. In turn, the principal specifies a single plan
of action ξ that she takes when the agent stops learning. Necessarily, C is the agent’s best-
response to the principal’s action ξ, and ξ is the principal’s best-response to C; the principal
knows that at the time of stopping the agent’s posterior belief has hit the boundary ∂C. This
equilibrium feedback substantially disciplines the types of continuation sets that survive the
fixed-point. Despite the lack of communication, the agent’s ability to hide his posterior belief

2Precisely, there exists an open interval (αc, 1−αc) such that the agent continues the learning so long as
his posterior process π = {πt} remains in this set.
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from the principal is remarkably limited. In equilibrium, the principal perfectly elicits the
agent’s posterior belief without communication. Consequently, as we show formally, for all
intermediate beliefs, the principal’s payoff is higher under no communication and the agent
is worse-off relative to the game with full communication.

The no-communication environment features the emergence of discontinuous regime
changes for projects of ex ante similar quality. Specifically, we show that a small change
in initial belief about θ can, in equilibrium, lead the agent to reverse his one-sided stopping
rule. In turn, rather than approaching the principal when his posterior is sufficiently low,
the agent only stops learning when his posterior belief about the quality of the project is
sufficiently high. As an implication, the principal switches from taking a low action to taking
a high action at the time of stopping.

The determining factor for these type of discontinuities depends upon whether the prin-
cipal has commitment power in the no-communication game. When the principal lacks com-
mitment, the agent has first-mover advantage to specify which of the two continuation regions
prevail after initiating the learning process. Thus, the discontinuous regime change occurs in
the no-communication game without commitment at exactly that point where the agent’s
preference over either of the two continuation regions switches.

In the no-communication game with commitment, the principal commits to a course of
action at the time of stopping, which in turn disciplines the continuation region chosen by
the agent, should he decide to initiate learning. By implication, the discontinuities in this
setting arise because the agent has the option to immediately stop/never start learning,
thereby preventing the principal to free ride on the agent’s research. When this threat is
credible and the agent would not initiate learning under the principal’s preferred course of
action, the principal instead adopts her second-best course of action (e.g. switching from a
low to high action at the time of stopping).

Literature review. Our paper builds on the seminal work of Crawford and Sobel (1982)
followed by Melumad and Shibano (1991) by allowing the agent to have incomplete knowledge
about the hidden state of the world and thus engaging in a noisy-learning problem. However,
we restrict the space of communication between the two parties to two extreme cases, namely
full communication and no communication. We thereby purposefully downplay the role of
strategic communication and emphasize, instead, the strategic interaction of the agent’s
learning decision on the principal’s action choice.

The separation of learning from the action choice in the context of research and approval
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is studied in Carpenter and Ting (2007), McClellan (2017) and Henry and Ottaviani (2019).
In contrast to these papers, we study an environment characterized by both no communica-
tion between the parties and the absence of a public signal. Our model thus assumes away
symmetric information by only letting the agent to have access to the acquired information.
Hence, the only available information to the principal at the time of stopping is the shared
initial belief and the observation that agent has submitted the project for the principal to
take an action.

Our work relates also to Grenadier et al. (2016) and Orlov et al. (2019) in which a prin-
cipal decides whether and when to undertake an irreversible investment based on a public
signal (observable to both parties) and the information provided by the agent about a payoff
relevant hidden variable. Both papers highlight the fact that the direction of the bias between
the principal and the agent guides both the agent’s preference toward early or late submission
and his ability to credibly communicate his information to persuade the principal. Aside from
the differences in the payoff structure – ours is quadratic (following the hypothesis testing lit-
erature) and theirs is quasi-linear utility (following the organizational investment literature)
– we deliberately abstract away from communication issues by restricting ourselves to the
extreme cases of mandatory full communication and infeasible communication. Particularly,
we are interested in understanding how the mandates set by the principal guide the learning
decisions of the agent and eventually determine the types of projects submitted by the agent
to the principal.

Finally, on a more distant thread, our paper is related to the strategic experimentation
literature (c.f., Bolton and Harris (1999) and Keller et al. (2005))—particularly its delegated
versions such as Guo (2016) and Klein (2016). In contrast to such delegated strategic ex-
perimentation models, our model does not allow the principal to observe the output of the
experimentation process carried out by the agent.

Organization of the paper. In section 2 we study the stage game between the parties
and their preference profiles. In section 3 we present the benchmark of full communication.
Subsequently, in section 4 we present the equilibrium results in the absence of communica-
tion between principal and agent. Results on the comparison between two communication
extremes are provided in section 5. Finally, we conclude in section 6. The proofs that are not
offered in the main body are relegated to the appendix A.
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2 Model

An agent is responsible for learning about the viability of a project. When the agent stops
learning, the principal is tasked with executing the project. The project’s type is a binary
random variable θ ∈ {0, 1}, unobserved to both parties. Both parties share a common initial
belief π = P (θ = 1) at time 0. The agent’s role is to collect information about θ and the
principal gets to take an action a ∈ R.

The information flow process x is only observable to the agent and follows a drift-diffusion
dxt = θdt+ σdZt. This implies that the posterior process {πt} held by the agent follows3

dπt =
πt(1− πt)

σ
dZ̄t, (2.1)

in that σdZ̄t = dxt− πtdt is the innovation process. The agent stops at a random time τ , at
which time the principal takes an action. After she takes an action, the value of θ is realized.
The utility of agent and principal after the realization of θ are, respectively, equal to

UA(a, θ) = κ− (a− b− θ)2

UP (a, θ) = −(a− θ)2.

The first term in the agent’s utility, κ, represents his private benefits from the execution of
the project. The parameter b, assumed to be positive without loss of generality, represents
the extent of conflict of interest between the two parties. Further, we assume the agent is
impatient with time preference rate of ρ > 0, while the principal is infinitely patient.

3 Full Communication at Stopping

Suppose that when the agent stops learning he must perfectly communicate his posterior
belief πτ to the principal. That is, the agent cannot hide his collected information from the
principal. As such, the principal naturally takes action πτ for any stopping time τ , thereby
maximizing her expected payoff. This, in turn, determines the exit value function for the
agent:

gc(πτ ) = κ− πτ (πτ − b− 1)2 − (1− πτ )(πτ − b)2 = κ− b2 + π2
τ − πτ . (3.1)

3This follows directly from Theorem 9.1 in Lipster and Albert (2001).
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The agent then follows the path of his posterior process until he takes an exit decision.
Effectively, he solves the stopping time problem4

VA,c(π) = sup
τ

E
[
e−ρτgc(πτ )

]
. (3.2)

The standard HJB equation from the perspective of the agent who observes the posterior
path is

ρVA,c(π) =
1

2σ2
π2(1− π)2V ′′A,c(π). (3.3)

In the sequel, we repeatedly use the general solution to the HJB equation (3.3), which has
the following form5

c1π
1−λ(1− π)λ + c2π

λ(1− π)1−λ, (3.4)

in which c1 and c2 are real constants and λ =
1+
√

1+8σ2ρ

2
, that is strictly larger than one. On

the space of twice continuously differentiable functions on the unit interval C2[0, 1], one can
define the infinitesimal characteristic operator K for the posterior process {πt} as

Kh = −ρh+
π2(1− π)2

2σ2
h′′, ∀h ∈ C2[0, 1]. (3.5)

Throughout the paper we assume b2 < κ < 1/4. This assumption rules out the uninteresting
cases of immediate stopping and indefinite delay irrespective of the initial belief.

Proposition 1 (Full Communication). There exists a unique Markov perfect equilibrium
in which the agent continues the learning process so long as πt ∈ (αc, 1 − αc), and stops
otherwise. Further, the point αc exists uniquely in (0, 1/2).

As a result of this proposition, the principal takes the high action (1−αc) when the belief
about θ is high and takes the low action αc when the belief is low. When the initial belief
is not in the interval (αc, 1 − αc), the agent stops learning immediately and the principal
takes action π. This description amounts to Figure 1 in which we plot the value functions
for both parties, with the left y-axis used for VA (solid blue line) and the right y-axis for VP
(solid black line).6 At the boundary points {αc, 1− αc} the agent’s value function smoothly
meets the stopping value (dashed blue line), whereas kinks appear on the principal’s payoff

4In the paper, we use the subscript c to refer to the full communication and n to the no-communication
situation.

5Of course, if the agent pays (receives) a flow cost (benefit) while learning, this would manifest as an
additional constant term in the HJB equation and in the general solution without materially affecting the
results.

6For all figures, we use the following combination of primitives: κ = 0.24, b = 0.17, λ = 2.2.
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function. This is owed to the fact that the decision to stop or continue is made by the agent
and not the principal. Also, in the continuation region (αc, 1−αc) the principal has constant
valuation: when the initial belief is π, with probability π−αc

1−2αc
the posterior belief path will hit

the upper barrier (1− αc) and with complementary probability it will hit the lower barrier
αc. In the former case, the principal’s action is 1−αc while in the latter case it is αc. In both
cases, her conditional expected payoff is −αc(1 − αc), resulting in the flat valuation on the
continuation region.

To summarize: with perfect communication of the agent’s ex post belief, the valuation of
both parties is symmetric around π = 1/2 with high (low) actions associated to high (low)
levels of the beliefs. Both of these features of the equilibrium disappear in the absence of
communication, as presented in the next section.

0 αc 1− αc 1

0

π

VA

0

α2
c − αc

VP

Figure 1: Value Functions in Full Communication

This figure plots the equilibrium value functions of the agent (VA; solid black) and of the principal (VP ;
solid blue) in the full-communication game, each as a function of the initial belief π. At the time of stopping,
the agent truthfully communicates his posterior belief to the principal who then takes her utility maximizing
action. The dotted-blue line represents the agent’s exit value gc(πτ ) as a function of her continuously updated
posterior belief. When the agent’s prior/posterior belief is within the continuation region (αc, 1 − αc), he
continues learning. Otherwise, he stops learning and reports his belief to the principal.

4 Strategic Stopping with No Communication

In this section, we consider an environment in which credible communication is either infea-
sible or prohibitively costly. This modeling choice is, of course, stylized. We make this choice
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to sidestep issues of strategic communication à la Crawford and Sobel (1982). Such a scenario
could arise if, for example, the knowledge acquired by the agent is extremely specialized and
there is a fixed cost associated with conveying such knowledge in terms that the principal
could understand.7

In situations in which it is infeasible for the agent to communicate what he has learned,
the principal’s ability to commit to a course of action when learning ceases plays an important
role in determining the equilibrium outcome of the game. Therefore, we distinguish between
two cases: (i) the principal cannot commit ex ante to an action profile at the time of stopping
and (ii) the principal can commit ex ante and hence her choice shapes the agent’s learning
decision. We present results for both cases in the following subsections.

4.1 Principal Lacks Commitment Power

In this environment the agent starts the game by choosing whether to initiate the learning
process or not. This corresponds to a binary decision d ∈ {stop, continue} at t = 0. Condi-
tioned on initiating the learning process, i.e d = continue, the agent chooses a continuation
region C ⊂ [0, 1] that encodes all relevant information of the stopping time problem he faces.
Particularly, he continues learning so long as πt ∈ C and stops otherwise. Therefore, the
agent’s strategy is summarized by the mapping (d,C) : [0, 1] → {stop, continue} × 2[0,1],
where the domain of this mapping corresponds to the initial belief π ∈ [0, 1].8

In the subsequent stage of the game, the principal specifies a course of action, as depicted
in Figure 2. Obviously, if the agent stops right away at t = 0, the principal’s optimal action
is π. For all t > 0, we only consider strategies for the principal in which she takes a fixed
action ξ, independent of the stopping time.

In this game in which the principal has no commitment, the agent has the first mover
advantage. The agent’s choice of whether or not initiate the learning disciplines the course of
action specified by the principal, both on and off the equilibrium path. Anticipating results
presented in the next subsection, relative to the case in which the principal has commitment
power, this yields for the agent a weak improvement in his welfare for all initial beliefs, with
a strict improvement for a subset of initial beliefs with positive measure.

7Alternatively, as we will see below, when she is able to commit to a course of action, the principal is better
off in the no-communication equilibrium relative to the full-communication equilibrium for intermediate
ranges of initial beliefs about the project’s quality. If the principal can ex ante commit to ignoring the
agent’s report (even off-equilibrium) and to a pre-specified course of action, then the principal would choose
the no-communication equilibrium.

8We use bold-face symbols to refer to the mappings and use regular font to denote a generic output of
that map.
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A, t = 0

P, t = 0 P, t = τ

(d =
stop

)
(d = continue, C)

〈UA(π, θ), UP (π, θ)〉 〈e−ρτUA(ξ, θ), UP (ξ, θ)〉

ξ = π ξ

Figure 2: Game tree – no commitment from the principal

Notation 2. For any Borel-measurable subset B ⊂ [0, 1], denote τB as the first time the
process {πt} hits the set B. That is, τB = inf {t ≥ 0 : πt ∈ B}. We denote the boundary of
any such set, B, by ∂B.

Before presenting the definition of the equilibrium, we need to introduce one more object.
Given that the principal takes action ξ at the stopping time, the exit-value of the agent at the
stopping time τ is denoted by gn(πτ ; ξ). For a fixed ξ, this is only a function of his posterior
belief at τ . Except where necessary, we suppress the dependence of the agent’s exit-value
upon the principal’s pre-specified course of action ξ. This exit-value is given by

gn(πτ ; ξ) = Eπτ
[
κ− (ξ − b− θ)2

]
= κ+ πτ [2(ξ − b)− 1]− (ξ − b)2 (4.1)

Definition 3 (Equilibrium for the No-Commitment, No-Communication Game). Given the
initial belief π, the tuple of strategy mappings 〈ξ, (d,C)〉 constitutes a Markov perfect equi-
librium in the no-commitment, no-communication game if

(i) The principal’s action ξ(π, d, C) is a best-response to every (d, C). Equivalently, given
the continuation set C, the principal’s action reflects her rational beliefs, that is on
{τ <∞}

ξ = Eπ [θ | πτ ∈ ∂C, d = continue]

ξ = π if d = stop.
(4.2)

(ii) The agent’s continuation set C(π) is a best-response to ξ.

11

Electronic copy available at: https://ssrn.com/abstract=3668546



(iii) The agent’s decision at time 0 is d = continue iff

VA,n(π) := sup
τ

Eπ
[
e−ρτUA(ξ, θ)

]
= sup

τ
Eπ
[
e−ρτgn(πτ )

]
≥ QA(π) := κ− b2 + π2 − π,

(4.3)

where ξ ≡ ξ(π, continue,C(π)).

The three conditions in our definition of the equilibrium are simply the standard best-
response requirements along each sub-game of the full-game in Figure 2, after solving for the
sub-game equilibria by backwards induction.

The first condition places the most discipline on the equilibrium outcome. Equation (4.2)
states that, in equilibrium, the principal’s action rationally accounts for the fact that πτ is
on the boundary of the continuation region chosen by the agent. The second condition (ii)
requires that, conditioned on deciding to continue, the agent picks the optimal continuation
region in response to his (correct) belief that the principal will follow her equilibrium strat-
egy ξ. And finally, (iii) requires that the agent initiate learning if his expected continuation
payoff at time 0 dominates his outside option of immediately stopping: QA(π). This outside
option of never initiating the learning is determined by principal’s action that is equal to
her symmetric belief of π. In what follows, we solve for the equilibrium step-by-step, by
backwards induction.

Principal’s turn. We first present the best-response reaction of the principal as a result of
the optimality conditions required by condition (i). We claim that

ξ(π, d, C) =

{
π d = stop or |∂C ∩ (0, 1)| ≥ 2

∂C \ {0, 1} o.w
(4.4)

It is straightforward to verify (4.4). If d = stop then her optimal decision is to match the
action with her initial belief π; if the boundary of C contains more than two points in (0, 1)

(e.g., π ∈ (α, β) ⊂ C; α, β ∈ ∂C; and 0 < α < β < 1), then the principal is uncertain with
regard to whether πτ = α or πτ = β. Consequently from the Martingale property of (2.1)
and as a result of the Optional Stopping theorem, the principal infers that

Eπ [θ | πτ ∈ {α, β}] = α
β − π
β − α

+ β
π − α
β − α

= π, (4.5)

and takes the action π, again matching her action with her initial belief. Alternatively, if
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|∂C ∩ (0, 1)| = 1, then the principal knows exactly the agent’s posterior at the stopping time
and thus takes the corresponding action. Having characterized the principal’s equilibrium
strategy under no-commitment, we are now ready to discuss the sub-game in which the agent
chooses his continuation set conditioned on having decided to initiate the learning process.

Agent’s choice of C in the sub-game d = continue. In this sub-game, the agent knows
that principal’s optimal reaction in the subsequent sub-game follows (4.4). Therefore, if he
chooses a fully-inscribed continuation set – that is C ⊂ (0, 1) – his choice is followed by the
principal’s response of π.9 And if he chooses a one-sided continuation region – namely (α, 1]

or [0, β) – the principal perfectly elicits his posterior belief at his stopping time, i.e α or β
depending on which subset is chosen. We next show a fully inscribed continuation region
never satisfies equilibrium requirement (ii).

Toward the contradiction, assume the agent chooses C ⊂ (0, 1), π ∈ (α, β) ⊂ C, and
α, β ∈ ∂C. As outlined above, given this continuation region, the principal will best respond
back by taking action π at the time of stopping. Inserting this action in the exit value function
of the agent in (4.1), gn(πτ ) becomes an affine function in πτ—increasing or decreasing
depending on whether the initial belief π is greater or smaller than b + 1/2. In either case,
such a monotone exit value function does not support a fully inscribed open interval as the
continuation region. For instance, when gn is increasing in πτ , the agent can profitably deviate
by slightly lowering α, the lower threshold determining the stopping time, and continuing the
learning process over a larger interval. A formal proof ruling out fully inscribed continuation
regions is presented in the next lemma.

Lemma 4. Suppose the principal takes a constant action a, that may or may not be equal
to the initial belief π, then the equilibrium continuation set can never have a fully inscribed
open component (α, β).

Proof. Recalling the principles of optimality for stopping time problems, it must be the case
that on the continuation region VA,n > gn and on the stopping region [0, 1] \ C, VA,n = gn.
Further, KVA,n ≤ 0 on the entire unit interval.10 Assume without loss of generality that
a > b + 1/2 so gn is increasing in πτ . Also, toward contradiction suppose (α, β) is an open
component of C.11

9A fully-inscribed set B ∈ [0, 1] is one in which 0, 1 /∈ ∂B. That is, neither ends of the unit interval are
on the boundary of the set B.

10The reader can consult section 2, specifically equations (2.2.81) and (2.2.92) of Peskir and Shiryaev
(2006) for more detailed exposition.

11That is for some x ∈ (α, β) ⊂ C, this interval is the maximal connected subset of C that contains x.
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First, note that Kgn(α) = −ρgn(α) ≤ 0 because of the aforementioned principles of
optimality. So, VA,n(α) = gn(α) ≥ 0. Since gn is increasing and VA,n > gn on (α, β), then it
must be the case that VA,n > 0 on this interval. Hence, in light of the HJB equation on (α, β)

(ρVA,n = π2(1−π)2

2σ2 V ′′A,n), one deduces the strict convexity of VA,n; equivalently, V ′′A,n > 0, on
this interval.

Define r := VA,n− gn. Then from the principle of smooth fit on the boundaries, we would
have r′(α) = r′(β) = 0.12 Therefore, either r′ = 0 on the entire [α, β], or there exists a point
x ∈ (α, β) such that r′′(x) = V ′′A,n(x) = 0. The former case cannot happen because then r

will be constant on [α, β] and equals to zero, that is in contrast with VA,n > gn ≥ 0 on the
open interval. The latter case also is in contrast with the fact that V ′′A,n is always positive on
(α, β). Therefore, C can never have an open component with both end points differing from
{0, 1}.

Emboldened by the previous lemma, we can now safely restrict our search for contin-
uation sets that survive conditions (i) and (ii) to one-sided intervals. In this regard, we
call (α, 1] the α-right-sided-interval and denote it by Rα and [0, β) is called β-left-sided-
interval and denoted by Lβ. Therefore, the set of equilibrium continuation sets must belong
to {Rα : α ∈ [0, 1]} ∪ {Lβ : β ∈ [0, 1]}.

Proposition 5. There exists a unique right-sided-interval denoted by Rαn and a unique left-
sided-interval Lβn that satisfy conditions (i) and (ii) of definition 3. In addition, αn < 1−βn.

In particular, condition (i) is satisfied if and only if the principal takes action αn (resp.
βn) when agent’s continuation region is Rαn (resp. Lβn). In Figure 3, we plot the agent’s
payoff functions under the continuation sets Rαn and Lβn : VA,R and VA,L, respectively. The
tangent lines at αn and βn depict the agent’s exit value functions – when the principal takes
action αn and βn respectively at the exit time – that in turn induce the continuation value
functions VA,R onRαn = (αn, 1] and VA,L on Lβn = [0, βn). We refer to VA,R as the right-sided
value function and VA,L as the left-sided value function.

Recalling equation (3.4), we can thus write

VA,R(π) =
(
κ− b2 + α2

n − αn
)( π

αn

)1−λ(
1− π
1− αn

)λ
, (4.6a)

VA,L(π) =
(
κ− b2 + β2

n − βn
)( π

βn

)λ(
1− π
1− βn

)1−λ

. (4.6b)

12This is a standard result in the stopping time contexts where the underlying process is a diffusion; see
section 9.1 of Peskir and Shiryaev (2006).
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The right-sided value function is decreasing and the left-sided value function is increasing;
thus, the two functions intersect at a unique point, which we denote by ηn. As it can be
confirmed from Figure 3, conditioned on d = continue, the agent’s choice of continuation
region is Lβn on [0, αn), Rαn on [αn, ηn], Lβn on (ηn, βn] and Rαn on (βn, 1].13

Having established the strategies adopted by the agent in this sub-game, we now can
turn to the final requirement of the sub-game perfect equilibrium: the optimality condition
at the root of the game tree, condition (iii).

0 αn γn ηn βn 1

0

γ
(1)
R γ

(1)
L γ

(2)
R

π

QA

VA,R
VA,L

Figure 3: Agent’s Value Functions

This figure plots the agent’s value functions under two choices of continuation regions: Rαn
(solid blue)

and Lβn (solid black). The two tangent lines, positioned below the value functions, represent the agent’s exit
valuation when principal takes action αn and βn respectively. The dotted black line represents (QA)—the
agent’s payoff under immediate stopping (and principal taking action π). The intersections of VA,R (VA,L)
with QA are listed by the sequence γ(i)R (γ(i)L ).

Agent’s choice of d. At the root of the game-tree, the agent decides whether or not
to initiate the learning process under the correct belief that, when continuing, he subse-
quently selects the one-sided continuation region that, in turn, determines the principal’s
best-response ξ in (4.4).

When not initiating the learning process, the agent obtains the expected payoff of QA(π)

(defined in condition (iii)) upon immediate delivery of the project to the principal. Therefore,
condition (iii) implies that the agent initiates learning whenever max{VA,R(π), VA,L(π)} >

13At first glance, it may seem surprising that the left-sided continuation region prevails on [0, αn). But this
is simply because on this region, the only continuation region consistent with d = continue is the left-sided
region Lβn

. The same logic holds for Rαn
on the interval (βn, 1].
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QA(π). Otherwise, the agent immediately delivers the project to the principal.
This condition adds an element of nonstationarity to the agent’s decision. Specifically,

at t = 0 (and only at t = 0) continuation of learning is optimal if the continuation value
dominates the immediate stopping payoff QA as well as the exit value function gn. Viewing
the x axis in Figure 3 as the initial belief held by both principal and agent, the agent decides
to initiate the learning process on the subset of Rαn on which VA,R > QA. Therefore, the
decision to initiate the learning process depends on whether π belongs to that subset or not,
whereas the decision to terminate the learning depends on whether πτ belongs to Rαn . The
same logic holds for the subset of initial beliefs in which the left-sided region Lβn prevails.

Next, we characterize the agent’s optimal choice of d at the root of the tree. For this we
denote the i-th intersection of VA,R with QA by γ(i−1)

R , letting γ(0)
R = αn. The same convention

is used to refer to the intersections of VA,L with QA. The agent thus chooses to stop at t = 0

for π ∈ [0, γ
(1)
R ), continue and select Rαn on (γ

(1)
R , ηn), continue and select Lβn on (ηn, βn),

and finally stop on (βn, 1]. The agent is indifferent on the boundary of these regions, so we
break the tie in favor of the principal’s payoff.

Despite the fact that principal does not have commitment power, it is nevertheless en-
lightening to express her expected payoff under both the left- and right-sided regions. In
the next subsection, these payoffs will become strategically important since we allow the
principal to have commitment power, thereby disciplining the agent’s choices of whether to
initiate learning and under what conditions to stop the learning process.

In the one-sided continuation regions, there is always a positive probability that {πt}
hits the end-point that belongs to the continuation region (e.g 1 ∈ Rαn or 0 ∈ Lβn) before
the other end-point. In such situations, the agent never delivers the project to the principal.
As such, we need to take a stand on how the principal values indefinite delay, and precisely
what her payoff is when the project is never delivered to her?

Recall that we assume the principal is infinitely patient. Intuitively, we view her time
preference as the limit of finitely patient profiles with diminishing exponential discount rate
ρP → 0. Thus, it is natural to treat her payoff from an indefinite delay by the agent as zero,
since as the stopping time tends towards infinity (with declining, though positive probability),
for any fixed discount factor the principal’s payoff tends towards zero.

Having specified the principal’s payoff from indefinite delay, we can express her expected
payoff under each one-sided continuation region. For instance suppose Rαn is chosen by
the agent. Then, he stops learning when either πτ = αn or πτ = 1. In the latter case the
principal’s payoff is zero, because 1 belongs to the continuation region. Even though the
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agent is entirely confident about the underlying quality of the project, he nevertheless never
delivers the project to the principal. In the former case:14

VP,R(π) = (α2
n − αn)P (ταn < τ1)

= (α2
n − αn)

1− π
1− αn

= −αn(1− π)
(4.7)

Similarly, when agent selects Lβn as his continuation set, the principal’s expected payoff is

VP,L(π) = (β2
n − βn)P (τβn < τ0)

= (β2
n − βn)

π

βn
= −(1− βn)π.

(4.8)

Together, the two expressions imply that there exists a cut-off γn := αn/(αn + 1− βn) such
that principal prefers the action αn to βn iff π > γn. These two value function, together with
the principal’s payoff under agent’s immediate stopping, i.e QP = π2 − π, are depicted in
Figure 4.

0 αn γn βn 1

0

−αn

−(1− βn)
π

QP

VP,R
VP,L

Figure 4: Principal’s Value Functions

This figure shows the principal’s value function: VP,R under continuation region Rαn (solid blue) and
VP,L under continuation region Lβn (solid black), each as a function of the initial belief π. The two graphs
are linear, and intersect at γn < 0.5. For low (high) levels of initial belief, the principal prefers the high (low)
action. Also, her payoff when the agent stops immediately (QP ) is shown by the dotted black line.

At this point, we are fully equipped to present the equilibrium outcome of the extensive
14Appendix A.4 provides the derivation of the probability of hitting αn prior to the absorbing state of

πτ = 1 conditional on θ = 1. It is straightforward to extend this to derive the unconditional probability of
hitting αn before τ1.

17

Electronic copy available at: https://ssrn.com/abstract=3668546



game in which the principal does not have the ability to make an ex ante commitment to a
certain course of action, as represented in Figure 2.

Theorem 6 (Equilibrium for the No-Commitment, No-Communication Game). In the ab-
sence of ex ante principal commitment, there exists a Markov perfect equilibrium15, in which
the agent stops immediately when the initial belief is either sufficiently low or high; otherwise,
he specifies a one-sided stopping rule with a low threshold αn (resp. high threshold βn) for
moderately low (resp. high) initial beliefs.

In Figure 5 we plot both players’ equilibrium value functions in the absence of commit-
ment by the principal. Notably, the principal’s payoff features discontinuities, because it is
the agent who has the first mover advantage. Accordingly, the agent smooths out his payoff
by strategically determining the equilibrium continuation region.

0 γ
(1)
R

ηn βn 1

0

π

VA

0

VP

Figure 5: Equilibrium Value Functions when Principal Lacks Commitment Power

This figure represents the equilibrium value functions of the agent (solid blue) and the principal (solid
black) as a function of the initial belief π in the no-communication game in which the principal lacks
commitment power. The agent’s payoff function is continuous because he has the first mover advantage,
while the principal’s payoff function exhibits discontinuities at γ(1)R (where agent switches from immediate
stopping to leaning under Rαn

) and at ηn (where agent switches from the right sided continuation region
Rαn

to the left sided continuation region Lβn
).

15The uniqueness is up to the choice of the continuation region on the boundary points, where we choose
to pick the Pareto optimal outcome, thereby breaking the ties in favor of the principal seeing as the agent
has already smoothed out his payoff.
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4.2 Principal Has Commitment Power

In this part, we ask: What happens when the principal is the first mover and commits to
a certain action at the stopping time? Specifically, the principal’s strategy is the mapping
ξ : [0, 1]×{stop, continue} → [0, 1], by which, at time 0, she sets a target action that only
depends on the initial belief and the agent’s choice of whether to initiate learning (d).

In the no-communication game with commitment, the principal signals her commitment
power by restricting herself to strategies that do not depend upon the agent’s choice of C.
We view this as the appropriate strategy space for a principal with commitment power since,
in equilibrium, this will lead to a weak improvement in the principal’s value function relative
to the game in which her strategy is further dependent upon the agent’s continuation region.

Following the principal’s specification of choice of action at the time of stopping, the
game continues with the agent’s action i.e (d, C). The agent’s strategy mappings are d :

[0, 1]2 → {stop, continue} and C : [0, 1]2 → 2[0,1], where both maps take in (π, ξ) ∈ [0, 1]2

as the input; the first one returns the agent’s learning decision at t = 0, and the second
one returns his choice of continuation region. The game-tree is plotted in Figure 6. In the

P, t = 0 A, t = 0

〈UA(ξ, θ), UP (ξ, θ)〉

t = 0

〈e−ρτUA(ξ, θ), UP (ξ, θ)〉
t = τ

ξ

(d =
stop

)

(d = continue, C)

Figure 6: Game tree – with commitment from the principal

following definition we present the requirements of the Markov perfect equilibrium of this
game.

Definition 7 (Equilibrium for the Principal-Commitment, No-Communication Game). Given
the initial belief π, the tuple of strategy mappings 〈ξ, (d,C)〉 constitutes a Markov perfect
equilibrium when principal holds commitment power if

(i) Conditioned on d = continue, C(π, ξ) is the optimal continuation region for every
(π, ξ) ∈ [0, 1]2.
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(ii) At t = 0, agent chooses d(π, ξ) = continue if

sup
τ

Eπ
[
e−ρτUA(ξ, θ)

]
> QA(π) = κ− b2 + π2 − π, (4.9)

for every (π, ξ).

(iii) For every π, ξ(π, stop) = π, and

ξ(π, continue) ∈ arg max
a

E
[
−(a− θ)21{τ<∞} | πτ ∈ ∂C(π, a)

]
. (4.10)

The first two conditions above are natural requirements for the sub-game perfect equi-
librium. The third condition, however, is the notable departure from the no-communication
game in which the principal does not have commitment power. This third condition requires
the principal to specify an optimal action in the root of the game-tree in Figure 6, antici-
pating, that, at the time of stopping, the agent’s posterior belief is on the boundary of the
continuation region.

The main pillars behind the characterization of the equilibrium in the no-communication
game with principal-commitment have already been developed in lemma 4 and proposition
5. In particular, condition (i) of the definition above together with lemma 4 imply that the
agent’s best-response mapping, C, must yield one-sided continuation regions.

Intuitively, the last item in definition 7 implies that, through a process of introspection,
the principal pre-specifies an exit action, a, that matches the boundary point of the continua-
tion region, C(π, a), subsequently chosen by the agent. In this sense, the principal’s promised
course of action is self-fulfilling because the agent finds it optimal to stop his learning when
his posterior hits the pre-specified benchmark of the principal. The principal, in turn, knows
that the posterior belief of the agent at the time of stopping is equal to the promised course
of action (which is, in turn, her optimal action).

However, the crucial difference with the no-commitment case is that now, as a result of her
first-mover advantage, the principal can effectively choose which of the two continuation sets,
Rαn or Lβn , prevails when the agent initiates the learning process. Of course this mandate
by the principal can be refused by the agent, in which case the agent never initiates learning;
otherwise, he finds it optimal to follow the continuation region whose boundary matches the
promised exit action of the principal.

As a result of the first-mover advantage now conferred to the principal, it is the principal’s
payoff function, depicted in Figure 4, that determines which continuation region prevails
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in equilibrium. A striking feature implied by this figure is that the principal’s preferred
continuation region is inversely related to the initial belief π. Specifically, for low levels of
the initial belief, the principal prefers the continuation region consistent with a high exit
action (for π < γn, VP,L ≥ VP,R). Conversely, for high levels of initial belief, the principal
prefers the continuation region consistent with the low exit action (for π > γn, VP,L ≤ VP,R).

What may seem surprising at first glance is that the principal always prefers one of the
two continuation regions over immediate stopping (i.e. max{VP,R, VP,L} > QP for π ∈ (0, 1)).
To understand the intuition behind this result, consider the initial belief π = 0.5 > γn, a value
for which the right-sided continuation region is preferred by the principal to the left-sided
region. By invoking the right-sided continuation region, the principal improves her payoff
relative to immediate stopping in two ways: First, by initiating the low-action regime, the
principal’s ex post payoff conditional on stopping (i.e ταn < τ1) is improved relative to her
ex ante payoff when learning is never initiated. This is obviously the case since QP attains
its minimum at π = 0.5. Second, the principal’s expected payoff under indefinite delay is
higher than what she would attain under immediate stopping (indefinite delay occurs with
positive probability when θ = 1; 0 > QP ).

To see these two forces formally, decompose the principal’s payoff from immediate stop-
ping for π = 0.5 > γn:

QP = (π2 − π)P(ταn < τ1) + (π2 − π)(1− P(ταn < τ1))

< (α2
n − αn)P(ταn < τ1) + (π2 − π)(1− P(ταn < τ1))

< (α2
n − αn)P(ταn < τ1) + 0(1− P(ταn < τ1)

= VP,R

(4.11)

where the first line (representing the first force) follows from the fact that π2 − π achieves
its minimum at π = 0.5. The second inequality follows from the fact that π2 − π < 0

(representing the second force).16

In the next theorem we use the preference rankings over continuation regions and im-
mediate stopping for both principal and agent to identify the equilibrium outcome of the
no-communication game when the principal has commitment power. Our result is stated
formally in the following theorem:

16This result is qualitatively unchanged when instead modeling the principal’s utility function as UP (a, θ) =
φ− (a−θ)2, for some φ > 0. In this general setting, the principal will prefer QP to either continuation region
for sufficiently low or high initial beliefs, since indefinite delay now incorporates the opportunity cost φ of
never taking an action. Qualitatively, however, the model is unchanged.
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Theorem 8 (Equilibrium for the Principal-Commitment, No-Communication Game). There
exists a generically17 unique Markov perfect equilibrium satisfying the conditions listed in
definition 7.

Sketch of the proof. In Figure 3 we denote the i-th intersection of VA,R with QA by γ(i−1)
R in

which γ
(0)
R = αn. A similar convention is used for the intersections of VA,L and QA. Given

the agent’s and principal’s payoff functions over the entire belief region, depicted respec-
tively in Figure 3 and Figure 4, we express the equilibrium behavior over different intervals.
The relative ranking of intersection points, namely {γ(1)

R , γ
(1)
L , γn, γ

(2)
R }, determines whic con-

tinuation region is implemented in the equilibrium.18 Below, we deliberate on the ordering
γ

(1)
R ≤ γ

(1)
L ≤ γn ≤ γ

(2)
R .

(i) – [0, γ
(1)
R ): regardless of principal’s choice, the immediate stopping over this region is the

agent’s dominant choice.
(ii) – [γ

(1)
R , γ

(1)
L ): on this region the principal’s preference ranking is VP,L ≥ VP,R ≥ QP .

If she specifies the left-sided continuation region, with action βn, the agent responds by
immediately stopping, since on this interval VA,R < QA. Therefore, the principal commits to
the right-sided continuation region, with stopping action αn; the agent in turn initiates the
learning process, subject to the continuation region Rαn .
(iii) – [γ

(1)
L , γn): on this region the principal can induce her most favorable action, i.e βn,

because the agent no longer has the credible threat of immediate stopping; i.e., VA,L ≥ QA.
Therefore, the principal chooses stopping action βn and the agent initiates the learning
process subject to the continuation set Lβn .
(iv) – [γn, γ

(2)
R ]: the principal’s dominant action is αn, and the agent naturally initiates learn-

ing under the right-sided continuation region because VA,R ≥ QA. Therefore, the principal
chooses αn and the agent performs learning subject to the continuation set Rαn .
(v) – (γ

(2)
R , βn): even though the principal prefers αn on this region, the agent now has the

credible threat of immediately stopping should the principal specify action αn. Therefore, the
principal capitulates to the agent’s threat by taking action βn. In turn, the agent performs
the learning process subject to Lβn .
(vi) – [βn, 1]: The agent prefers immediate stopping regardless of the stopping action specified
by the principal. Thus, in equilibrium the agent never initiates learning and the principal
takes action π.

17Ties are broken in favor of the Pareto dominating outcome.
18Reducing the number of possibilities, recall that it is always the case by definition that γ(1)R < γ

(2)
R .
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The equilibrium pattern characterized above is generically unique on the interval [0, 1],
with multiple equilibria at the boundary points of the intervals. To rule out multiple equi-
libria, in each case we choose the Pareto dominant equilibrium.

Table 1 below summarizes the equilibrium strategy of each party under each range of
prior beliefs:

[0, γ
(1)
R ) [γ

(1)
R , γ

(1)
L ) [γ

(1)
L , γn) [γn, γ

(2)
R ] (γ

(2)
R , βn) [βn, 1]

Agent d = stop
d = cont d = cont d = cont d = cont

d = stop
C = Rαn C = Lβn C = Rαn C = Lβn

Principal’s π if d = stop π if d = stop π if d = stop π if d = stop π if d = stop π if d = stop
action βn if d = cont αn if d = cont βn if d = cont αn if d = cont βn if d = cont αn if d = cont

Table 1: Equilibrium strategy pair

The equilibrium value functions in the absence of communication but with the principal
having commitment power are plotted in Figure 7. In contrast to Figure 1, the value functions
for both agent and principal now feature discontinuities.

These discontinuities for both parties arise because of the interaction between the prin-
cipal’s commitment power and the agent’s threat of never initiating the learning process
(which is at times credible and non-credible). The first type of discontinuity for the principal
arises because for some prior beliefs the agent prefers immediate stopping to either contin-
uation region. For such initial beliefs (π /∈ [γ

(1)
R , βn]), the agent credibly threatens to stop

learning immediately regardless of which continuation region the principal recommends.
For all other beliefs, the principal prefers either of the two continuation regions over

immediate stopping (for intuition see equation (4.11)). Whether or not the principal is able
to induce the agent to adopt her preferred continuation region depends upon the credibility
of the agent’s threat to never initiate learning. Discontinuities in the value functions arise for
both principal and agent at those values for which the agent’s threat of immediate stopping
under the principal’s preferred continuation region switches from credible to non-credible
(and vice versa).

Remark 9. There are certain equilibrium features that are robust under other orderings
of intersection points. For example, if γ(2)

R > βn, the discontinuities in value functions at
γ

(2)
R occur at a value greater than βn. However, the prediction that moderately high levels

of belief, namely π ∈ (γn, γ
(2)
R ), induce the low action in equilibrium (αn) is robust. As

another case, the prediction that there exists a range of moderately low beliefs on which the
high action βn unfolds remains robust as long as γ(1)

L < γn. A more comprehensive analysis
connecting the primitives (κ, b, λ) to the orderings of the equilibrium intersections is highly
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Figure 7: Equilibrium Value Functions with No Communication

This figure plots the players’ equilibrium value functions in the no-communication game when principal
has commitment power, each as a function of the initial belief π. The agent’s value function (VA; solid
blue) exhibits discontinuities because, with commitment power, the principal has the first mover advantage.
This commitment power affords the principal the privilege of selecting which continuation region prevails in
equilibrium, which in turn prevents the agent from value matching. In addition, the principal’s payoff (VP ;
solid black) has discontinuous points at {γ(1)R , γ

(1)
L , γ

(2)
R } because at times the agent’s threat of immediate

stopping is credible, consequently forcing the principal to propose her second most preferred choice

intractable, and not quite fruitful in terms of equilibrium robust predictions. In the next
section we offer individual welfare predictions that are robust across equilibrium orderings.

5 The value of Non-Communication

5.1 Comparison of Payoffs Under Each Communication Regime

In this subsection we compare the payoffs of both principal and agent in the full-communication
game to their payoffs in the no-communication game with principal-commitment. Figure 8
plots the full communication payoffs (indexed by c; dashed lines) against the non-communication
payoffs (indexed by n; solid lines).

When communication is infeasible and the principal has commitment power, the agent
is weakly worse off (for intermediate prior beliefs strictly so), whereas in most regions the
principal is better off. Thus one can see why in many instances the principal would prefer
not to facilitate formal communication with the agent and instead pre-specify an action at
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the time of stopping to discipline the ex post quality of projects delivered by the agent in
equilibrium. In the next two propositions we formalize the two welfare comparisons suggested
by this figure, first for the agent and then for the principal.

Proposition 10. The agent is always worse off in the absence of communication.

Proof. Note that for every π ∈ [0, 1], VA,n(π) ∈ {QA(π), VA,R(π), VA,L(π)} where R = Rαn

and L = Lβn . The agent’s value function in the full communication follows (3.2):

VA,c(π) = sup
τ

Eπ
[
e−ρτ

(
κ− b2 + π2

τ − πτ
)]

(5.1)

Setting τ = 0, τ = ταn and τ = τβn in the rhs of the above equation implies respectively that
VA,c(π) ≥ QA(π), VA,c(π) ≥ VA,R(π) and VA,c(π) ≥ VA,L(π).

Proposition 11. There exists a function b(·) ≥ 0 such that for all b ∈ (b(κ, λ),
√
κ)19

(i) αn ≤ αc,

(ii) the principal is better off in the absence of communication on the intermediate belief
region (αc ∨ γ(1)

R , γ
(2)
R ∧ βn).

The essential content behind this proposition is that as the bias between the two parties
widens, in equilibrium the principal commits to a more conservative action under the right
sided continuation region (i.e., lowering αn) relative to the lower threshold chosen by the
agent under full communication (αc). This occurs because the action that maximizes the
agent’s utility is (a) always greater than the action which maximizes the principal’s utility
(b) increasing in b.

5.2 Project Realization and Indefinite Delay

As a relaxed notion of efficiency, we examine the conditional likelihood under the right-sided
continuation region that a project will never be undertaken despite its high quality; that is,
P (τ1 < τα | θ = 1), where again τ1 is the first time that the posterior belief hits one. Recall
the law of motion for the posterior belief:

dπt = σ−1πt(1− πt)dB̄t = σ−2πt(1− πt) (dxt − πtdt) (5.2)
19Recall that b is a parameter which governs the misalignment of the agent’s and principal’s preferences.
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Figure 8: Individual Payoff Comparison

This figure overlays the players’ value functions under full communication (dotted lines) on their value
functions under no communication and principal commitment (solid lines). The agent’s value functions are
colored in blue, and the principal’s are colored in black. In the intermediate belief region, the principal is
better off without communication and the agent is worse off. For sufficiently low or high initial beliefs, the
agent never initiates learning in either the full- or no-communication game; thus, both parties are indifferent
between either of the two communication environments.

Therefore, conditioned on θ = 1,

dπt = σ−1πt(1− πt)
(

1− πt
σ

dt+ dBt

)
. (5.3)

Define q(π) = Pπ (τ1 < τα | θ = 1). With {πt} following the above law of motion, an infinites-
imal analysis of q(πt) amounts to the ODE q′(π) + πq′′(π)/2 = 0 (see appendix A.4), with
the general solution q(π) = q0/π+ q1. The coefficients {q0, q1} are easily solved for using the
boundary conditions q(αn) = 0 and q(1) = 1.

When π ∈ (γ
(1)
R , γ

(1)
L ) ∪ (γn, γ

(2)
R ), the equilibrium continuation region is Rαn . Thus, as

implied by equation (5.3), the probability of the low action αn being undertaken conditioned
on θ = 1 is

Pπ (ταn ≤ τ1 | θ = 1) =
αn(1− π)

π(1− αn)
, (5.4)

and with complementary probability

Pπ (ταn > τ1 | θ = 1) =
π − αn
π(1− αn)

(5.5)
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the project is never delivered by the agent to the principal.
The first possibility, that a low action is taken when the project type is high, could also

arise in the perfect communication case, in which a stream of bad news lowers the agent’s
posterior belief to his lower threshold, at which point he stops learning and the principal
takes the lower action. In contrast, the second event, in which the good project is never
carried out, only occurs in the absence of communication.

For θ = 1 and π ∈ (γ
(1)
L , γn), the left sided continuation region is adopted by the agent

in equilibrium. Thus, the path of {πt} almost surely ends up at βn, even though the initial
belief that the project is a high type is less than half. Similarly, when θ = 1 and π ∈ (γ

(2)
R , βn)

the prevailing continuation region is again Lβn , so that a high type project eventually hits
the upper threshold βn, at which point the principal takes the high action.

A similar analysis can be done for a low type project, i.e θ = 0. When the initial belief is
π ∈ (γ

(1)
R , γ

(1)
L )∪(γn, γ

(2)
R ), the continuation regionRαn is adopted by the agent in equilibrium.

Thus, when the project is the low type, almost surely {πt} hits the lower boundary αn.
However, for π ∈ (γ

(1)
L , γn) ∪ (γ

(2)
R , βn) the equilibrium continuation region is Lβn , so that,

conditioned on θ = 0, the law of motion for {πt} is

dπt =
πt(1− πt)

σ

(
−πt
σ

dt+ dBt

)
. (5.6)

As a result,

Pπ (τβn ≤ τ0 | θ = 0) =
π(1− βn)

βn(1− π)
,

Pπ (τβn > τ0 | θ = 0) =
βn − π
βn(1− π)

.

(5.7)

Again the first event, hitting the upper boundary point consistent with a high action even
though the project is a low type, could also occur in the full communication case: a stream
of positive signals increases the posterior belief of a low type project sufficiently so that
the agent stops learning at the upper threshold. However, the second event – in which the
low type project is never undertaken (with a low action) – only happens in the absence of
communication.

Given the expressions discussed above, the probability of indefinite delay – in which the
agent never ceases learning and the principal never takes an action – can be drawn as a
function of the initial belief, which is what is shown in Figure 9. At the two ends of the belief
spectrum, the chance of indefinite delay is zero, because the agent immediately delivers the
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project to the principal. However, for most intermediate values of the prior belief π, where
the equilibrium continuation region is Rαn , the likelihood of indefinite delay increases as a
function of the initial belief. While this may seem counterintuitive – since one might expect
that projects with better initial assessments are carried out earlier – due to the non-credible
nature of communication, an increasing share of such projects are doomed to inaction.

0 αnαc γn βn1− αc 1

0

1
γ

(1)
R γ

(1)
L γ

(2)
R

π

Figure 9: Probability of Indefinite Delay

This figure represents the probability of indefinite delay as a function of the initial belief π when com-
munication is not feasible and the principal has commitment power. At the two ends of the belief interval,
the probability of indefinite delay is zero because the agent never initiates learning and the principal im-
mediately takes an action. In the intermediate region, this probability is increasing in π whenever the right
sided continuation region Rαn

prevails in equilibrium. Otherwise, on those intervals in which Lβn
prevails in

equilibrium, the probability of indefinite delay is decreasing in π. In the particular parameterization plotted
here, qπ(γ

(2)
R ) ≈ 0.65, indicating that, at times, indefinite delay can occur for the majority of projects in

equilibrium.

6 Conclusion

In this paper we study the implications of delegated learning under credible and non-credible
communication. By studying these two extreme cases, we are able to abstract away from the
well-studied issue of strategic communication between principal and agent.

Surprisingly, the non-credible communication equilibrium is preferred by the principal
for intermediate ranges of prior beliefs about the true state of the world. In this equilibrium,
the principal pre-specifies a course of action that she will take once approached by the agent.
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This, in turn, induces an equilibrium in which, by virtue of approaching the principal, the
agent fully reveals his privately observed posterior belief.

The non-credible communication equilibrium, moreover, produces two interesting impli-
cations relative to the full communication equilibrium. First, there is scope for indefinite
delay on the part of the agent and, in turn, a lack of action by the principal. This never
occurs in the full-communication environment. Second, under non-credible communication,
the equilibrium strategies of both principal and agent are discontinuous functions of the prior
beliefs of both parties about the true state of the world.

A Proofs

A.1 Proof of proposition 1

Existence. Recall the general form of solution to the HJB equation in (3.4). In the case of
perfect communication of the posterior belief, the value of stopping is gc(πτ ) = κ−b2+π2

τ−πτ .
Given the convex shape of exit value function g, one would guess that the continuation region
for the agent’s stopping time problem follows an inscribed open interval in [0, 1], denoted by
(α, β). On the boundaries of such interval the standard principles of continuous and smooth
fit are held. So, there are four equations available resulting from continuous and smooth fit
at α and β, together with four unknowns {α, β, c1, c2}. From continuous fit conditions:

c1α
1−λ(1− α)λ + c2α

λ(1− α)1−λ = κ− b2 + α2 − α (A.1a)

c1β
1−λ(1− β)λ + c2β

λ(1− β)1−λ = κ− b2 + β2 − β (A.1b)

And from the smooth-pasting relations at α and β:

c1(1− λ)α−λ(1− α)λ − c1λα
1−λ(1− α)λ−1 + c2λα

λ−1(1− α)1−λ − c2(1− λ)αλ(1− α)−λ = 2α− 1

(A.2a)

c1(1− λ)β−λ(1− β)λ − c1λβ
1−λ(1− β)λ−1 + c2λβ

λ−1(1− β)1−λ − c2(1− λ)βλ(1− β)−λ = 2β − 1

(A.2b)
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We conjecture that α = 1 − β and c1 = c2 = c, therefore the above four equations are
summarized to the following two:

cα1−λ(1− α)λ + cαλ(1− α)1−λ = κ− b2 + α2 − α (A.3a)

c(1− λ)α−λ(1− α)λ − cλα1−λ(1− α)λ−1 + cλαλ−1(1− α)1−λ − c(1− λ)αλ(1− α)−λ = 2α− 1

(A.3b)

Let us call the odd ratio at α by m = α/(1−α), then α = m/(1+m) and 1−α = 1/(1+m),
so

cm1−λ + cmλ = (1 +m)(κ− b2)− m

1 +m
(A.4a)

c(1− λ)m−λ − cλm1−λ + cλmλ−1 − c(1− λ)mλ =
m− 1

m+ 1
. (A.4b)

Substituting mλ from (A.4a) into (A.4b) and multiplying both sides by m lead to

c(2λ− 1)m2−λc(λ− 1)m1−λ − cλmλ = (λ− 1)m(1 +m)(κ− b2)− m(λm− 1)

1 +m
. (A.5)

Now replace mλ from (A.4a) into the above expression and obtain

c(2λ− 1)m1−λ = (κ− b2)(λm+ λ−m)− λm

m+ 1
+

m

(m+ 1)2
. (A.6)

Dividing corresponding sides of the above relation by that of (A.4a) implies that the solution
m must satisfy

1 +m2λ−1 = (2λ− 1)
(m+ 1)2(κ− b2)−m

(m+ 1)(κ− b2)(λm+ λ−m)− λm+ m
m+1

. (A.7)

At m = 0, the lhs of the above relation is strictly smaller than rhs. Further, at m = 1, the lhs
is equal to 2, while the rhs at m = 1 is equal to 2/(2λ− 1). Because λ > 1, the lhs value of 2
is always greater than the rhs at m = 1. This implies that there exists mc ∈ (0, 1) satisfying
(A.7) and thus the system in (A.4). So there exists αc ∈ (0, 1/2) satisfying (A.1) and (A.2).

Uniqueness. We prove that mc is indeed the unique solution to (A.7). Toward this, first
note that the lhs of this equation is increasing in m on positive reals, hence it suffices to
prove the rhs is decreasing in m. Let’s denote the expression on the rhs of (A.7) excluding
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(2λ− 1) by M , then

dM

dm
∝ (m+ 1)4(κ− b2)2 − (m2 − 1)2(κ− b2)−m2 ≡ N, (A.8)

where the constant of proportionality is positive. Note that N is convex in κ− b2, therefore
its maximum is achieved at the extremes where κ−b2 ∈ {0, 1/4}. Obviously, when κ−b2 = 0,
then N ≤ 0. At κ− b2 = 1/4:

N =
(m+ 1)4

16
− (m2 − 1)2

4
−m2 = −(m+ 1)2(m− 3)(3m− 1)

16
−m2 (A.9)

Then one can easily check the above expression achieves its maximum over [0, 1] at m = 1

that is equal to 0. Therefore, dM/dm ≤ 0, and hence the solution shown above is unique.
The verification step, showing that the above continuation set (αc, 1− αc), is indeed the

optimal continuation set is pretty standard, therefore we omit that and refer the reader to
the verification methods developed in Peskir and Shiryaev (2006).

A.2 Proof of proposition 5

Unique existence of Rαn . Let us first prove the unique existence of a right-sided interval
satisfying the stated two conditions. Let Rα = (α, 1] = C be a candidate continuation set.
Upon the stopping the principal knows that πτ = α, because ∂C is a singleton. Therefore,
she takes action α leading to the following exit value function for the agent:

gn(πτ ) = κ+ [2(α− b)− 1]πτ − (α− b)2 (A.10)

Because C is right-sided then gn must be decreasing in πτ , namely stopping at the low levels
of belief and continuing in the larger levels. This amounts to α < b + 1/2.20 Further, since
1 ∈ C, the coefficient c2 in (3.4) must be zero and we let c1 = c. Because of condition (ii),
VA,n has to satisfy continuous and smooth fit at the boundary α:

cα1−λ(1− α)λ = κ+ (2(α− b)− 1)α− (α− b)2

c(1− λ)α−λ(1− α)λ − cλα1−λ(1− α)λ−1 = (2(α− b)− 1)
(A.11)

20In the case of α = b + 1/2, the function gn is constant and particularly negative. Therefore, the agent
would rather to continue forever than stopping in finite time and incur a negative payoff. So this case never
supports a proper continuation set, and hence is eliminated from the analysis.
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After some regroupings one gets

λ

1− α
=

κ− (α− b)2

κ− (α− b)2 + (2(α− b)− 1)α
. (A.12)

So the candidate α must be a root to the following cubic polynomial that should exist in
[0, b+ 1/2):

R(α) := α3 − (1 + 2b+ λ)α2 +
(
b2 + 2b+ λ− κ

)
α + (b2 − κ)(λ− 1) (A.13)

Note that R(0) = −(λ − 1)(κ − b2) < 0, R(b + 1/2) = −(κ − 1/4)(λ + b − 1/2) > 0 and
R(1) = −λ(κ − b2) < 0. Using the intermediate value theorem together with the fact that
limx→∞R(x) = ∞ implies that R has a unique root in the interval (0, b + 1/2). Therefore,
one can always find a unique α that solves the system (A.11). The verification step, showing
the above α solving the system (A.11) does indeed give rise to the optimal continuation set
Rα, is standard and hence omitted from the proof.

Unique existence of Lβn. Now we examine a generic left-sided interval [0, β) = Lβ as a
candidate for the continuation set. Naturally, this would be the case only if gn is increasing,
so we require β > b + 1/2. Analogous to what was presented above one gets the following
system for the optimal β:

cβλ(1− β)1−λ = κ+ (2(β − b)− 1) β − (β − b)2

cλβλ−1(1− β)1−λ − c(1− λ)βλ(1− β)−λ = 2(β − b)− 1.
(A.14)

That after some manipulation amounts to

(2(β − b)− 1) β

(β − b)2 − κ
=
λ− β
λ− 1

⇔ β =
λ (κ− (β − b)2) + (λ− 1)β (2(β − b)− 1)

κ− (β − b)2
. (A.15)

Hence the optimal β must be a solution to the following cubic polynomial:

L(β) := β3 − (2(b+ 1)− λ) β2 +
(
(b+ 1)2 − κ− λ

)
β + λ(κ− b2) = 0 (A.16)

A sign determination exercise implies that L(0) = λ(κ− b2) > 0, L(b+ 1/2) = (κ− 1/4)(λ−
b− 1/2) and L(1) = (λ− 1)(κ− b2) > 0. Since b2 < 1/4 and λ > 1 then λ > b+ 1/2. Hence,
applying the intermediate value theorem combined with limx→−∞ L(x) = −∞ imply that
there must a exist a unique root of L in the region (b+ 1/2, 1).
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Proof for αn < 1 − βn. To show the last part of the proposition, i.e αn < 1 − βn, let us
plug 1− βn instead of αn in equation (A.13). After some simplifications one obtains

R(1− βn) = −β3
n + β2

n (2− 2b− λ) + βn
(
−1 + 2b− b2 + κ+ λ

)
− λ(κ− b2). (A.17)

Recall that βn is a solution to (A.16), thus one can leverage this and replace β3
n from that

equation into the above one, and get

R(1− βn) = 4bβn(1− βn) > 0. (A.18)

Given that αn is the unique root of R = 0 in the region (0, b + 1/2) and R(0) < 0, we can
now conclude that 1− βn must be larger than αn.

A.3 Proof of proposition 11

We first prove the existence of b(·) such that αn < αc for all b > b(κ, λ). For minimizing
the use of variables define ∆ := 1 − 4(κ − b2) and let ν := 1−

√
∆

1+
√

∆
. Then, a sharper analysis

on equation (A.7) implies that when m
(1+m)2

= κ − b2, its lhs is positive while the rhs is
zero, therefore mc ∈ (0, ν). Next, by rearranging equation (A.7) one obtains the following
equivalent characterization pinning down mc:

m2λ−1 = Tc(m) :=
(κ− b2)(λm+ λ− 1)(1 +m)− λm+ m2

1+m

(κ− b2)(λm+ λ−m)(1 +m)− λm+ m
1+m

(A.19)

In the next lemma we propose a lower bound for mc, i.e the unique solution to the above
equation on (0, ν).

Lemma 12. The equation νm = Tc(m) has a unique solution on (0, ν), denoted by mν, that
is smaller than mc.

Proof. We claim the function Tc is decreasing in m. Differentiating in m, one can see Tc
′(m)

is positively proportional to

Qc(m) := (m4 + 4m3 + 6m2 + 4m+ 1)(κ− b2)2 − (m4 − 2m2 + 1)(κ− b2)−m2, (A.20)

that is convex in (κ− b2) hence achieving its maximum at the boundaries of (κ− b2), namely
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{0, 1/4}. At κ− b2 = 0, Qc is obviously negative. Also at κ− b2 = 1/4, Qc equals to

Qc(m) =
−1

16
(3m2 + 2m+ 3)(1−m)2 ≤ 0. (A.21)

Therefore, Tc
′(m) ≤ 0. Denote the solution to νm = Tc(m) by mν that exists uniquely

because Tc is shown to be decreasing and Tc(0) > 0. Furthermore, since mc < 1 then on
(0,mc), νm > m2λ−1, therefore mν < mc.‖

The next step in the proof of the proposition is to show mν > mn, where mn is the odd
ratio associated to αn.

Lemma 13. The solution to νm = Tc(m) denoted by mν is bigger than mn.

Proof. Let us represent (A.13) in terms of the odd-ratio m:

Ro(m) := m2−2bm(1+m)+(1+m)2(κ−b2)(λ−1)−λm(1+m)
(
1− (1 +m)(κ− b2)

)
= 0.

(A.22)
From the analysis done in proposition 5 there exists a unique solution to the above equation
in the interval

[
0, 1/2+b

1/2−b

]
denoted by mn. Since Ro(0) ≥ 0, then Ro(m) < 0 iff m > mn. By

substituting (1 +mν)(λ− 1)(κ− b2) from νmν = Tc(mν) into Ro we see at m = mν :

Ro(mν) = −(1 +mν)×[
2bmν − νmν

(
(κ− b2)(λmν + λ−mν)(1 +mν)− λmν +

mν

1 +mν

)] (A.23)

Let αν = mν
1+µ

and revert the analysis back to the probability domain. Then, Ro(mν) < 0 iff

2b > ν

[
αν −

λαν
1− αν

+
κ− b2

1− αν

(
(λ− 1)αν

1− αν
+ λ

)]
⇔ 2b(1− αν) + ναν(αν + λ− 1) >

(κ− b2)(λ− αν)ν
1− αν

. (A.24)

Recall the definition of ∆, and define the following functions that respectively correspond to
the lhs and rhs of the above inequality:

Al(α) := 2b(1− α) + να(α + λ− 1)

Ar(α) :=
(1−∆)(λ− α)ν

4(1− α)

(A.25)
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Note that Al is convex in α thus is always greater than the tangent line at α = 0, so

Al(α) ≥ 2b+ (ν(λ− 1)− 2b)α. (A.26)

In addition, Ar is convex in α, therefore on α ≤ 1−
√

∆
2

(equivalently m ≤ ν) it is upper-
bounded by the line connecting (0,Ar(0)) to

(
1−
√

∆
2

,Ar(
1−
√

∆
2

)
)
. We refer to this line by

`. As a result, a sufficient condition for (A.24) is that for all α ≤ 1−
√

∆
2

, the linear lower
approximation for Al in (A.26) dominates the upper-envelope line `. This is the case iff the
domination occurs at the two ends α = 0 and α = 1−

√
∆

2
. The former is equivalent to

2b ≥ Ar(0) =
(1−∆)λν

4
=
λ(1−

√
∆)2

4
, (A.27)

and the latter is equivalent to

2b

(
1− 1−

√
∆

2

)
≥ Ar

(
1−
√

∆

2

)
− ν(λ− 1)(1−

√
∆)

2

⇔ b(1 +
√

∆) ≥ (1−∆)(1−
√

∆)(2λ− 1 +
√

∆)

4(1 +
√

∆)2
− (1−

√
∆)2(λ− 1)

2(1 +
√

∆)

⇔ b ≥ (1−∆)2

4(1 +
√

∆)3
.

(A.28)

Putting together (A.27) and (A.28) imply that for

b ≥ max

{
λ(1−

√
∆)2

8
,

(1−∆)2

4(1 +
√

∆)3

}
, (A.29)

Ro(mν) < 0, and hence mν > mn. Lastly, note that (A.29) leads to a well-defined function
b(κ, λ), because as b →

√
κ the lhs increases while the rhs approaches to zero (because

∆→ 1).‖

Proof of part (i): Using the previous two lemmas we can now conclude thatmc > mν > mn

thereby αc > αn.
Proof of part (ii): Note that on (αc ∨ γ(1)

R , γ
(2)
R ∧ βn) the principal’s full communication

payoff is −αc(1−αc) whereas her no-communication payoff is always larger than −αn(1−π).
Since αc ≥ αn and on this interval π ≥ αn then

−αn(1− π) ≥ −αn(1− αn) ≥ −αc(1− αc), (A.30)
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and the proof follows.

A.4 Forward equation for the hitting probability

In section 5 we defined the hitting probability as q(π) = P (τ1 < τα| θ = 1) and offered the
forward Kolmogorov ODE for that. Here, we present a short and intuitive verification of that
result. The law of iterated expectations implies:

q(π) = E [q(π + dπ)| θ = 1]

= E

[
q(π) + q′(π)dπ +

1

2
q′′(π)d〈π, π〉

∣∣∣∣ θ = 1

] (A.31)

Following the prescription for the diffusion process {πt} in (5.3), we apply Ito’s lemma to
the above expression and obtain the sought ODE: q′(π) + πq′′(π)/2 = 0.

This ODE has the general solution: q(π) = q0
π

+ q1, for constants {q0, q1}. The boundary
conditions q(αn) = 0 and q(1) = 1 can be used to identify the unknown coefficients, yielding:

q(π) = Pπ(τ1 < τα|θ = 1) =
αn(1− π)

π(1− αn)
(A.32)
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