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Lecture 1

Introduction to Comparative Statics

The models we study in this class are largely qualitative. Here is a simple example of what

I mean by a qualitative model.

1.1 Supply and Demand in a Single Market

You may recall from EC 11 that a demand curve expresses a relation between quantities

and prices for buyers. This being economics, there are at least two interpretations of the

demand curve. The Walrasian demand curve gives the quantity that buyers are willing

to buy as a function of the price they pay. As a function it maps prices to quantities. The

Marshallian demand curve gives for each quantity the price at which buyers are willing

to buy that quantity (see figure 1.1).

1.2 Comparative Statics of Supply and Demand

The model has these pieces: demand, supply and the market clearing price.

The (Walrasian) demand curve gives the quantity that buyers are willing to buy as a

function of the price they pay, D(p) is the quantity demanded at price p. As a behavioral

assumption, we normally expect the demand curve to be downward sloping. To simplify

things, let us assume the demand curve is smooth and that D′(p) < 0.

The (Walrasian) supply curve give the quantity that sellers are willing to sell as a

function of the price they receive, namely S(p) is the quantity supplied at price p. We

normally expect the supply curve to be upward sloping and further is smooth, that is S ′(p) >

0 (see figure 1.2).
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(a) A (Walrasian) demand curve

(b) The same curve as a Marshallian de-
mand

Figure 1.1: Demand curves

Figure 1.2: A (Walrasian) supply curve

The market equilibrium price p∗ and equilibrium quantity q∗ are determined by

“market forces” so that the quantity demanded is equal to the quantity supplied, or the

market “clears.” That is,

D(p∗)− S(p∗) = 0, (1.1)

q∗ = D(p∗) = S(p∗). (1.2)

What does comparative statics mean? The testable content does not come from char-

acterizing the price-quantity pairs that can be market equilibria, but rather from the way the
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Figure 1.3: Market clearing

equilibrium changes in response to interventions or exogenous changes to the environment.

The identification of how the static equilibrium changes in response to changes in outside

factors is called comparative statics.

Example 1.1 (Testable implications). Suppose a tax of t per unit sold is imposed. What

happens to the prices?

To answer this we need to be careful about which price we are speaking of. Let pb denote

the price the buyer pays and ps the price the seller receives. Then pb = ps + t. The market

prices pb(t) and ps(t), which depend on the size of the tax, are determined by “market forces”

so that the quantity demanded is equal to the quantity supplied.

D(pb(t))− S(ps(t)) = 0,

q(t) = D(pb(t)) = S(ps(t)), (1.3)

pb(t) = ps(t) + t.

We are interested in how the equilibrium prices pb(t) and ps(t) vary with the tax t. In other

words, we want to know what we can say about p′s, p
′
b, and q′ (which are the derivatives

with respect ot t). For starters, if there are market clearing prices, we know that for all t,

D(ps(t) + t)− S(ps(t)) = 0. Differentiate both sides with respect to t leads to:

D′(ps(t) + t)(p′s(t) + 1)− S ′(ps(t))p′s(t) = 0,

⇒ p′s(t) = − D′(ps(t) + t)

D′(ps(t) + t)− S ′(ps(t))
. (1.4)
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Since D′ < 0 and S ′ > 0, then it follows that

−1 < p′s(t) < 0. (1.5)

A similar analysis implies that 0 < p′b(t) < 1. Jointly these two relations imply that as the

tax rate increases, the equilibrium price that buyer pays increases and the equilibrium price

the seller receives decreases.

Exercise 1.2. In the previous example, perform the comparative statics of equilibrium

amount q(t) with respect to the tax t.

How do we know that market clearing prices will exist? That is, how can we be sure that

the supply and demand curves cross? Here is a sufficient set of conditions that will guarantee

it (assuming smoothness, which implies no jumps). If the price is low enough, then demand

exceeds supply.

lim
p→0

D(p) > lim
p→0

S(p).

If the price is high enough, then supply exceeds demand:

lim
p→∞

S(p) > lim
p→∞

D(p).

Exercise 1.3. In the above comparative statics example we took the derivatives of equilib-

rium values pb(t) and ps(t) with respect to t without proving these functions are differentiable.

Prove that this is indeed the case.

1.3 Market equilibria as maximizers

For a smooth function f , if its derivative is positive to the left of x∗ and negative to the

right, then it achieves a maximum at x∗. In our simple market, demand is greater than

supply to the left of equilibrium and less than supply to the right. Thus excess demand

(demand− supply) acts like the derivative of a function that has a maximum at the market

equilibrium.

Define A(p) by

A(p) =

∫ p

0

(D(x)− S(x)) dx,

which is the (signed) area under the Walrasian demand curve and above the Walrasian

supply curve up to p (see figure 1.4a). There is a mathematical chance that this area might
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(a) Market equilibrium maximizes A(p)

(b) Market equilibrium maximizes Mar-
shallian surplus M(q)

Figure 1.4: Equilibrium as maximizers

be infinite, but that could not be the case for a demand curve, as it would imply that the

revenue obtainable by lowering the price and increasing the quantity would be unbounded,

which cannot happen in a real economy. Then, by the First Fundamental Theorem of

Calculus

A′(p) = D(p)− S(p), andA′′(p) = D′(p)− S ′(p) < 0,

so A is strictly concave. Its maximum occurs at the market clearing price p∗. Thus, at

least in this simple case, finding the market clearing price is equivalent to maximizing an

appropriate function. This is a theme to which we shall return later. But now let us recast

the above argument in a Marshallian framework.

The Marshallian demand curve is the inverse of the Walrasian demand curve and ditto

for the supply curves. Marshallian consumers’ surplus is the area under the Marshallian

demand up to some quantity q. You may recall from Ec 11 (we shall derive it later) that the

inverse supply curve of a price-taking seller is the marginal cost. Thus the area under the

inverse supply curve up to q is the total variable cost of producing q. Thus the (signed) area

M(q) between the inverse demand curve and the inverse supply curve is equal to consumers’

surplus minus (variable) cost. Once again, the market equilibrium quantity q∗ maximizes

the Marshallian surplus M(q). See figure 1.4b.
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Appendix: The Implicit Function Theorem

An equation of the form

f(x, p) = y (1.6)

implicitly defines x as a function of pon a domain P if there is a function ξ on P for

which

f(ξ(p), p) = y

for all p ∈ P . It is traditional to assume that y = 0, but not essential. (We can always convert

y to zero by defining f̂(x, p) = f(x, p)− y. Then f(x, p) = y if and only if f̂(x, p) = 0.)

Theorem 1.4 (Classical Implicit Function Theorem). Let X × P be an open subset of

Rn × Rm, and let f : X × P → Rn be Ck, for k ≥ 1. Assume that Dxf(x̄, p̄) is invertible.

Then there are neighborhoods U ⊂ X and W ⊂ P of x̄ and p̄ on which (1.6) uniquely

defines x as a function of p. That is, there is a function ξ : W → U such that:

1. f(ξ(p); p) = f(x̄, p̄) for all p ∈ W .

2. For each p ∈ W , ξ(p) is the unique solution to (1.6) lying in U . In particular, then

ξ(p̄) = x̄.

3. ξ is Ck on W , and
∂ξ1
∂p1

. . . ∂ξ1
∂pm

...
...

∂ξn
∂p1

. . . ∂ξn
∂pm

 = −


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fn
∂x1

. . . ∂fn
∂xn


−1 

∂f1
∂p1

. . . ∂f1
∂pm

...
...

∂fn
∂p1

. . . ∂fn
∂pm

 . (1.7)

We end this chapter with few examples in which the Implicit Function Theorem fails to

hold.

Example 1.5 (Differential not invertible). Define f : R× R→ R by

f(x, p) = (x− p2)(x− 2p2).

Consider the function implicitly defined by f(x, p) = 0. The function f is zero along the

parabolas x = p2 and x = 2p2, and in particular f(0, 0) = 0. The hypothesis of the Implicit

Function Theorem is not satisfied since ∂f(0,0)
∂x

= 0. The conclusion also fails. The problem

here is not that a smooth implicit function through (x, p) = (0, 0) fails to exist. The problem
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is that it is not unique. There are four distinct continuously differentiable implicitly defined

functions.

Example 1.6 (Lack of continuous differentiability). Consider the function h(x) = x +

2x2 sin 1
x2

, see figure 1.5. This function is differentiable everywhere, but not continuously

differentiable at zero. Furthermore, h(0) = 0, h′(0) = 1, but h is not monotone on any

neighborhood of zero. Now consider the function f(x, p) = h(x)− p. It satisfies f(0, 0) = 0

and ∂f(0,0)
∂x
6= 0, but there is no unique implicitly defined function on any neighborhood, nor

is there any continuous implicitly defined function.

To see this, note that f(x, p) = 0 if and only if h(x) = p. So a unique implicitly defined

function exists only if h is invertible on some neighborhood of zero. But this is not so, for

given any ε > 0, there is some 0 < p < ε
2

for which there are 0 < x < x′ < ε satisfying

h(x) = h(x′) = p. It is also easy to see that no continuous function satisfies h
(
ξ(p)

)
= p

either.

−0.2 −0.1 0.1 0.2

−0.2

−0.1

0.1

0.2

x

h(x)

Figure 1.5: h(x) = x+ 2x2 sin 1
x2
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Lecture 2

Profit Maximization

2.1 Maximization and comparative statics

Just as above, our “equilibrium” conditions are often the results of some maximizing behav-

ior. Consider this simple model of a firm. When the firm produces the level y ≥ 0 of output,

it receives revenue R(y) and incurs cost C(y). The profit is then R(y)− C(y). In addition,

it pays an ad rem tax ty. It seeks to maximize its after-tax profit:

max R(y)− C(y)− ty.

Let y∗(t) solve this problem. What do we know?

R′(y∗)− C ′(y∗)− t = 0

This does not tell us much about data that we might observe, but let’s see how y∗ changes

with t:

R′(y∗(t))− C ′(y∗(t))− t = 0 for all t.

Therefore, by differentiating both sides with respect to t we get

[R′′(y∗(t))− C ′′(y∗(t))] y∗′(t)− 1 = 0,

or

y∗′(t) =
1

R′′(y∗(t))− C ′′(y∗(t)) .

8
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How can we sign this? The answer is, via the second order conditions. Namely, R′′(y∗) −
C ′′(y∗) ≤ 0, which implies y∗′(t) < 0. The Implicit Function Theorem guarantees that if

R′′(y∗)− C ′′(y∗) 6= 0, then y∗(t) is unique and differentiable.

Revenue maximization

What if the firm maximizes after-tax revenue R(y) − ty instead of profit. The first order

condition is R′(y)− t = 0 and the second order condition is R′′(y) ≤ 0 (note that I have used

the economists’ sloppy notation of omitting the ∗. I should actually use something different,

since it is a different function). Differentiating the first order condition with respect to t

yields

R′′(y)y′ − 1 = 0,

or

y′ =
1

R′′(y)
< 0,

where the inequality follows from the strict second order condition. Thus a change in an

ad rem tax gives us no leverage on deciding whether a firm after-tax maximizes revenue or

after-tax profit.

Wages

Suppose that the firm’s costs C are a function both of its level of output and a wage param-

eter, and assume that the partial derivative DyC > 0 (which must be the case if the firm is

minimizing costs).

For profit maximization,

maximize R(y)− C(y;w),

the first order condition is R′(y)−DyC(y;w) = 0, for an interior solution (marginal cost =

marginal revenue), and the second order condition is

R′′(y)−D2
yC(y;w) ≤ 0.

Letting y∗(w) be the maximizer we see that

h(w) = R′(y∗(w))−DyC(y∗(w);w) = 0,
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for all w. Thus h is constant so h′ = 0. By the chain rule,

h′(w) = R′′(y∗(w))y∗′(w)−D2
yC(y∗(w);w)y∗′(w)−DywC(y∗(w);w) = 0.

Solving for y∗′ gives

y∗′(w) =
DywC(y∗(w);w)

R′′(y∗(w))−D2
yC(y∗(w);w)

.

The denominator must be negative, so the sign of this is the opposite of the sign of the mixed

partial DywC.

For revenue maximization, i.e

maxR(y),

the first order condition is R′(y) = 0 for an interior solution, and the second order condition

is R′′(y) ≤ 0. Letting ŷ(w) be the maximizer we see that it is independent of w! Thus

ŷ′(w) = 0!

An application to sports economics

What is the effect of player salaries on ticket prices?

For a profit-maximizing sports franchise (and one visit to Dodger Stadium ought to

convince you that profits are being fiercely pursued), the revenue comes from ticket sales,

parking, and concessions, but the costs are almost entirely determined by players’ (and

coaches’ and groundskeepers’) wages and utility bills for the lights, all of which do not

depend on how many tickets are sold. The number of tickets sold will depend on the price

charged, so the revenue is not going to be a linear function of the number of tickets sold.

A reasonable approximation to profit is

profit = R(y)− C(w),

where y is the number of tickets sold. (Parking and concessions tend to be proportional to

the number of tickets.) There is also TV revenue, which does not depend on y, but can be

treated as an additive constant. While some costs (free bobble heads, programs, etc.) are

proportional to tickets they are small, and could also be netted out of the ticket revenues.

We can see that w has no effect on y, so it cannot affect the ticket price.

What about second-order effects—higher wages attract better players, and so increase

demand for tickets, enabling the franchise to sell the same number of tickets at a higher

price. This works only if higher wages are limited to one team that is able to attract all the
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good players—if all teams’ wages go up, there is no reason to expect any one team to get

better.

What about third-order effects—if wages are too high the team will fold and then there

will be no tickets available at any price. This might be more convincing if team prices were

lower, but according to Forbes, as of September 2020, NFL franchises were worth on average

over $3 billion, ranging from from $2 billion (Buffalo Bills) to $6.5 billion (Dallas Cowboys).

(See Forbes’ list).

If, as the owners usually claim come time to negotiate with players, teams are such money

losers, then why are team prices so high? For one thing, teams are a good tax shelter. A

new owner can assign 80% of the value to player contracts and depreciate them over four or

five years, then resell the team for largely capital gains. They are also frequently real cash

cows. And then there are some special accounting practices that allow profits to be counted

as expenses.

2.2 After tax profit revisited

maxR(y)− C(y)− ty.

Let y∗ solve this problem. Last time we used the second order conditions to conclude

d

dt
y∗(t) < 0,

provided the derivative exists.

But we got stuck when it came to dealing with wages. In that case

sgn

(
d

dw
ŷ(w)

)
= −sgn (DywC(y, w)) .

For this we can use another approach.

2.3 A lemma

Proposition 2.1. Let X and P be open intervals in R, and let f : X × P → R be twice

continuously differentiable. Assume that for all x ∈ X and all p ∈ P ,

∂2f(x, p)

∂p∂x
≥ 0. (2.1)
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Let x0 maximize f(·, p0) over X and x1 maximize f(·, p1) over X. Then

(p1 − p0)(x1 − x0) ≥ 0. (2.2)

In other words, the sign of the change in the maximizing x is the same as the sign of the

change in p.

If ≤ replaces ≥ in (2.1), then the sign of the change in x is the opposite of the sign of

the change in p.

For minimization rather than maximization the sign of the effect is reversed.

Proof. By definition of maximization, we have

f(x0, p0) ≥ f(x1, p0) and f(x1, p1) ≥ f(x0, p1).

“Cross-subtracting” implies

f(x1, p1)− f(x1, p0) ≥ f(x0, p1)− f(x0, p0). (∗)

But

f(x1, p1)− f(x1, p0) =

∫ p1

p0

∂f

∂p
(x1, π) dπ

and

f(x0, p1)− f(x0, p0) =

∫ p1

p0

∂f

∂p
(x0, π) dπ.

So (∗) becomes ∫ p1

p0

∂f

∂p
(x1, π) dπ ≥

∫ p1

p0

∂f

∂p
(x0, π) dπ,

or ∫ p1

p0

(
∂f

∂p
(x1, π)− ∂f

∂p
(x0, π)

)
dπ ≥ 0.

Now we use the same trick of writing a difference as an integral of the derivative to get

∫ p1

p0

(
∂f

∂p
(x1, π)− ∂f

∂p
(x0, π)

)
dπ =

∫ p1

p0

(∫ x1

x0

∂2f

∂p∂x
(ξ, π) dξ

)
dπ ≥ 0.

By assumption ∂2f
∂p∂x
≥ 0, so by the convention that

∫ b
a

= −
∫ a
b

, we conclude that if p1 > p0,

then x1 ≥ x0, and the conclusion follows.
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Application 1

So consider

f(y, t) = R(y)− C(y)− ty.

Then
∂f(y, t)

∂t
= −y

so
∂2f(y, t)

∂y∂t
= −1 < 0,

so
d

dt
y∗(t) < 0.

Exercise 2.2. Apply the above analysis to revenue maximization.

Exercise 2.3. Consider y = f(x), where x is an input that gets paid wage w. The profit

maximization problem is

max pf(x)− wx.

Perform the comparative statics of x∗ (optimal solution to the above problem) with respect

to the output price p.

2.4 Supermodularity

If inequality ∗ holds whenever x1 > x0 and p1 > p0, we say that f exhibits increasing

differences, a property related to what we now call supermodularity. To define this, we

first need to define a lattice.

Definition 2.4. A partial order � on a set X is a binary relation that is transitive,

reflexive, and antisymmetric. A lattice is a partially ordered set (X,�) with the property

that every pair x, y ∈ X, has a least upper bound x∨ y (also called the join) and a greatest

lower bound x ∧ y (also called the meet).

For now, the most important example of a lattice is Rn with the coordinate-wise ordering

=, where x = y if xi ≥ yi for each i = 1, . . . , n.

Definition 2.5. A real-valued function f on a lattice is supermodular if

f(x ∧ y) + f(x ∨ y) ≥ f(x) + f(y).

13
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Proposition 2.1 can be restated as follows.

Proposition 2.6. If f is a twice differentiable function on (Rn,=), then f is supermodular

if and only if for i 6= j
∂2f(x)

∂xi∂xj
≥ 0.

That is, an increase in i increases the marginal increase of j. That is i and j are com-

plements.

14



Lecture 3

Maximization and Comparative

Statics

3.1 Maximization with many variables

Theorem 3.1 (Necessary First Order Conditions). If U is an open subset of a normed space,

and x∗ ∈ U is a local extremum of f , and f has directional derivatives at x∗, then for any

nonzero v, the directional derivative satisfies Dvf(x∗) = 0. In particular, if f is differentiable

at x∗, then Df(x∗) = 0.

Proof using one-dimensional case. Since x∗ is an interior point of U , there is an ε > 0 such

that x∗ + λv ∈ U for any λ ∈ (−ε, ε) and any v ∈ Rn with |v| = 1. Set gv(λ) = f(x∗ + λv).

Then gv has an extremum at λ = 0. Therefore g′v(0) = 0. By the chain rule, g′v(λ) =

Df(x∗ + λv)(v). Thus we see that Df(x∗)(v) = 0 for every v, so Df(x∗) = 0.

Theorem 3.2 (Necessary second order conditions). Let f be a continuously differentiable

real-valued function on an open subset U of Rn and assume that f is twice differentiable at

x∗, and define the quadratic form Q(v) = D2f(x∗)(v, v). If x∗ is a local maximizer, then Q

is negative semidefinite. If x∗ is a local minimizer, then Q is positive semidefinite.

Proof using the chain rule. As in the proof of Theorem 3.1, define g(λ) = f(x∗ + λv). it

achieves a maximum at λ = 0, so the second order condition is g′′(0) ≤ 0. So by the chain

rule, using Df(x∗) = 0,

g′′(0) = D2f(x∗)(v, v) ≤ 0.

That is, Q is negative semidefinite.

15
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Theorem 3.3 (Sufficient second order conditions). Let f be a continuously differentiable

real-valued function on an open subset U of Rn. Let x∗ belong to U and assume that Df(x∗) =

0 and that f is twice differentiable at x∗.

If the Hessian matrix f ′′(x∗) is positive definite, then x∗ is a strict local minimizer of f .

If the Hessian matrix f ′′(x∗) is negative definite, then x∗ is a strict local maximizer of f .

If the Hessian is nonsingular but indefinite, then x∗ is neither a local maximum, nor a

local minimum.

3.2 Comparative statics of first order conditions

Start with a function f : X × P → R where X ⊂ Rn and P ⊂ Rm. For each p ∈ P let x∗(p)

be the interior maximizer of f(·; p). The the first order conditions

∂

∂x1
f (x∗1(p1, . . . , pm), . . . , x∗n(p1, . . . , pm); p1, . . . , pm) = 0

...

∂

∂xi
f(x∗1(p1, . . . , pm), . . . , x∗n(p1, . . . , pm); p1, . . . , pm) = 0

...

∂

∂xn
f(x∗1(p1, . . . , pm), ,̇x∗n(p1, . . . , pm); p1, . . . , pm) = 0

hold for each p. As such the left-hand side is a constant (zero) function of p, and so its partial

derivatives are all zero. Differentiating the left-hand side of the ith first order condition with

respect to pk thus gives

n∑
j=1

[
∂2f(x∗(p); p)

∂xi∂xj

∂x∗j(p)

∂pk

]
+
∂2f(x∗(p); p)

∂xi∂pk
= 0,

for all i = 1, . . . , n and k = 1, . . . ,m.

In matrix terms this becomes
∂2f(x∗(p); p)

∂x21
· ∂2f(x∗(p); p)

∂x1∂xn
...

...
∂2f(x∗(p); p)
∂xn∂x1

· ∂2f(x∗(p); p)
∂x2n



∂x∗1(p)

∂p1
· ∂x∗1(p)

∂pm
...

...
∂x∗n(p)
∂p1

· ∂x∗n(p)
∂pm

 = −


∂2f(x∗(p); p)
∂x1∂p1

· ∂2f(x∗(p); p)
∂x1∂pm

...
...

∂2f(x∗(p); p)
∂xn∂p1

· ∂2f(x∗(p); p)
∂xn∂pm


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Now if the leftmost matrix has an inverse, then we may write


∂x∗1(p)

∂p1
· ∂x∗1(p)

∂pm
...

...
∂x∗n(p)
∂p1

· ∂x∗n(p)
∂pm

 = −


∂2f(x∗(p); p)

∂x21
· ∂2f(x∗(p); p)

∂x1∂xn
...

...
∂2f(x∗(p); p)
∂xn∂x1

· ∂2f(x∗(p); p)
∂x2n


−1 

∂2f(x∗(p); p)
∂x1∂p1

· ∂2f(x∗(p); p)
∂x1∂pm

...
...

∂2f(x∗(p); p)
∂xn∂p1

· ∂2f(x∗(p); p)
∂xn∂pm


to solve for all the comparative statics results.

When does this inverse exist? By the second order conditions for a maximum the matrix[
∂2f(x∗;p)
∂xi∂xj

]
must be negative semidefinite.

This means that it is invertible precisely when it is negative definite. Thus, we can solve for

all the comparative statics results whenever the strong second order condition (definiteness)

holds.

3.3 The envelope theorem

There is one more incredibly useful theorem, called the Envelope Theorem. I’ll start by

explaining why it’s called the envelope theorem.

Given a one-dimensional parameterized family of curves,

fα : [0, 1]→ R where α runs over some interval I,

a curve

h : [0, 1]→ R

is the envelope of the family if

i. each point on the curve h is tangent to one of the curves fα and

ii. each curve fα is tangent to h.

That is, for each α, there is some t and also for each t, there is some α, satisfying fα(t) = h(t)

and f ′α(t) = h′(t). If the correspondence between curves and points on the envelope is one-to-

one, then we may regard h as a function of α. However, once we regard h as a function of α

rather than t, the tangency condition has to be rewritten. This observation is the celebrated

“Wong–Viner” theorem.
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Now let f : X × P → R, where X and P are real intervals, and consider the problem

max
x∈X

f(x, p).

We may call x the decision variable and p the parameter, or we may call x the control and

p the state, or we may say that x is endogenous and p is exogenous. The function f is called

the objective function.

Let x∗(p) be an interior solution to this maximization problem. Note that it depends on

the parameter p. Define

V (p) = f(x∗(p), p)

for each p. The function V is called the optimal value function.

For fixed x, the graph of the function φx : P → R via

φx(p) = f(x, p)

defines a curve (or in higher dimensions of P , a surface).

The value function V (p) satisfies

V (p) = f(x∗(p), p) = max
x

φx(p).

The Envelope Theorem states that under appropriate conditions, the graph of the value

function V will be the envelope of the family of curves

{φx : x ∈ range x∗}.

Envelope theorems in maximization theory are concerned with the tangency conditions this

entails.

To get a picture of this result, imagine a plot of the graph of f . It is the surface z = f(x, p)

in (x, p, z)-space. Orient the graph so that the x-axis is perpendicular to the page and the

p-axis runs horizontally across the page, and the z-axis is vertical. The high points of the

surface (minus perspective effects) determine the graph of the value function V . Here is an

example:

Example 3.4. Let

f(x, p) = p− (x− p)2 + 1, 0 ≤ x, p ≤ 2.

See figure 3.1a. Then given p, the maximizing x is given by x∗(p) = p, and V (p) = p + 1.

18
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(a) Graph of f(x, p) = p− (x− p)2 + 1
(b) Graph of f(x, p) = p− (x− p)2 + 1
viewed from the side

Figure 3.1: Envelope graphs

The side-view of this graph in figure 3.1b shows that the high points do indeed lie on the

line z = 1 + p. For each x, the function φx is given by

φx(p) = p− (x− p)2 + 1.

The graphs of these functions and of V are shown for selected values of x in figure 3.2. Note

that the graph of V is the envelope of the family of graphs φx. Moreover the slope of V is

given by

V ′(p) =
∂f

∂p

∣∣∣∣
x=x∗(p)=p

= 1 + 2(x− p)|x=p = 1.

This last observation is known as the Envelope Theorem.

Theorem 3.5 (Envelope Theorem version 1). Assume that f and x∗ are differentiable. Then

V ′(p) = D2f(x∗(p), p).

That is, the derivative of the optimal value function is simply the partial derivative of the

objective function, evaluated at the optimal decision.
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Figure 3.2: Graph of V (p) = p + 1 as the envelope of the family {φx(p) : x = 0, .25, . . . , 2},
where φx(p) = p− (x− p)2 + 1 = f(x, p).

Proof. By hypothesis f and x∗ are differentiable, so V is also differentiable. By the chain

rule

V ′(p) = D1f(x∗(p), p) · x∗′(p) +D2f(x∗(p), p),

but D1f(x∗(p), p) = 0 by the necessary first order conditions.

Alternate proof for the one-dimensional case. By hypothesis f and x∗ are differentiable, so

V is also differentiable. Fix p0 in the interior of P , and fix x0 = x∗(p0). By definition of V ,

for any p,

V (p) ≥ f(x0, p) and V (p0) = f(x0, p0).

Therefore the function h(p) defined by

h(p) = V (p)− f(x0, p)
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achieves its minimum at p0. The necessary first order condition for this is that

V ′(p0)−D2f(x0, p0) = 0.

Note that the alternative proof generalizes easily to higher dimensional sets P , and it does

not use the first-order conditions. In fact, as long as V is differentiable and f is differentiable

with respect to p, the argument goes through. The key is to showing that V is differentiable.

3.4 The Envelope Theorem and the Le Chatelier Prin-

ciple

Consider a producer that produces output with capital K and labor L according to the

production function f .

max
K,L

pf(K,L)− wL− rK

Let π∗(p, w, r) be the optimal profit function, and K∗(p, w, r) and L∗(p, w, r) be the input

demand functions, and y∗(p, w, r) be the supply function.

Now suppose K is fixed at K̄ = K∗(p̄, w̄, r̄), and the producer wants to maximize

max
L

pf(K̄, L)− wL− rK̄.

Let L̂(p, w, r, K̄) be the short-run demand for labor, ŷ(p, w, r, K̄) be the short-run sup-

ply, and π̂ be the short-run profit function. What can we say about

∂L∗

∂p
vs.

∂L̂

∂p
, etc.?

Fix w̄ and r̄. Then

π∗(p, w̄, r̄) ≥ π̂(p, w̄, r̄, K̄)

with equality at p = p̄. That is, p̄ minimizes the difference, so

∂π∗(p̄, w̄, r̄)

∂p
− ∂π̂(p̄, w̄, r̄, K̄)

∂p
= 0,
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and
∂2π∗(p̄, w̄, r̄)

∂p2
− ∂2π̂(p̄, w̄, r̄, K̄)

∂p2
≥ 0.

But by the Envelope Theorem,

∂π∗/∂p = ∂(pf(K,L)− wL− rK)/∂p = f(K∗, L∗) = y∗,

so
∂2π∗(p̄, w̄, r̄)

∂p2
=
∂y∗(p̄, w̄, r̄)

∂p
,

and
∂2π̂(p̄, w̄, r̄, K̄)

∂p2
=
∂ŷ(p̄, w̄, r̄, K̄)

∂p
.

Thus
∂y∗(p̄, w̄, r̄)

∂p
≥ ∂ŷ(p̄, w̄, r̄, K̄)

∂p
.

This sort of result is known as Le Chatelier’s Principle. Similarly, we can prove

∂L∗(p̄, w̄, r̄)

∂w
≤ ∂L̂(p̄, w̄, r̄, K̄)

∂w
.

3.5 Le Chatelier without the Envelope Theorem

Long Run

max R(L,K)− wL− rK

FOC

RL − w = 0

RK − r = 0

SOC [
RLL RLK

RKL RKK

]
is negative semidefinite.

Comparative statics: Differentiate the first order conditions wrt w. Write L(w), K(w).

RLLL
′ +RLKK

′ − 1 = 0

RKLL
′ +RKKK

′ = 0
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ADD something [
RLL RLK

RKL RKK

][
L′

K ′

]
=

[
1

0

]
[
L′

K ′

]
=

[
RLL RLK

RKL RKK

]−1 [
1

0

]
[
L′

K ′

]
=

1

D

[
RKK −RLK

−RKL RLL

]−1 [
1

0

]
So

L′ =
RKK

D
=

RKK

RKKRLL −R2
KL

By SOC (and existence of inverse) we have

RKK < 0, RLL < 0, D > 0.

So

L′(w) < 0,

which is not surprising. Also

K ′(w) =
−RKL

D

This sign is harder to figure. It is the opposite of RKL. If w increases, the first order

conditions require that the MPL increase. This is accomplished by decreasing L. This in

turn changes the MPK by RKL. If RKL > 0, then a decrease in L will decrease RK , so it is

now less than r, so K must decrease to raise the MPK up to r.

Short Run

In the short run K is fixed, so the FOC is

RLLL
′
SR − 1 = 0

L′SR =
1

RLL

Comparison

How do we compare this to the long run?
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In the long run,

L′ =
RKK

RKKRLL −R2
KL

=
1

RLL − R2
KL

RKK

=
1

RLL + ε
< 0

where ε > 0. Thus

0 > L′ > L′SR.

That is, the short run response of L to a change in w is greater in magnitude than the long

run response.

3.6 Quasiconcave functions

There are weaker notions of convexity that are commonly applied in economic theory.

Definition 3.6. A function f : C → R on a convex subset C of a vector space is:

• quasiconcave if for all x, y in C with x 6= y and all 0 < λ < 1

f(λx+ (1− λ)y) ≥ min{f(x), f(y)}.

• strictly quasiconcave if for all x, y in C with x 6= y and all 0 < λ < 1

f(λx+ (1− λ)y) > min{f(x), f(y)}.

• explicitly quasiconcave or semistrictly quasiconcave if it is quasiconcave and in

addition, for all x, y in C with x 6= y and all 0 < λ < 1

f(x) > f(y)⇒ f(λx+ (1− λ)y) > min{f(x), f(y)} = f(y).

• quasiconvex if for all x, y in C with x 6= y and all 0 < λ < 1

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}.

• strictly quasiconvex if for all x, y in C with x 6= y and all 0 < λ < 1

f(λx+ (1− λ)y) < max{f(x), f(y)}.
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• explicitly quasiconvex or semistrictly quasiconvex if it is quasiconvex and in

addition, for all x, y in C with x 6= y and all 0 < λ < 1

f(x) < f(y)⇒ f(λx+ (1− λ)y) < max{f(x), f(y)} = f(y).

There are other choices we could have made for the definition based on the next lemma.

Lemma 3.7. For a function f : C → R on a convex set, the following are equivalent:

1. The function f is quasiconcave.

2. For each α ∈ R, the strict upper contour set [f(x) > α] is convex, but possibly empty.

3. For each α ∈ R, the upper contour set [f(x) ≥ α] is convex, but possibly empty.

Proof. (1)⇒ (2) If f is quasiconcave and x, y in C satisfy f(x) > α and f(y) > α, then for

each 0 ≤ λ ≤ 1 we have

f(λx+ (1− λ)y) ≥ min{f(x), f(y)} > α.

(2)⇒ (3) Note that

[f ≥ α] =
∞⋂
n=1

[f > α− 1
n
],

and recall that the intersection of convex sets is convex.

(3)⇒ (1) If [f ≥ α] is convex for each α ∈ R, then for y, z ∈ C put α = min{f(y), f(z)}
and note that f(λy + (1− λ)z) belongs to [f ≥ α] for each 0 ≤ λ ≤ 1.

Corollary 3.8. A concave function is quasiconcave. A convex function is quasiconvex.

Lemma 3.9. A strictly quasiconcave function is also explicitly quasiconcave. Likewise a

strictly quasiconvex function is also explicitly quasiconvex.

Of course, not every quasiconcave function is concave.

Example 3.10 (Explicit quasiconcavity). This example sheds some light on the definition

of explicit quasiconcavity. Define f : R→ [0, 1] by

f(x) =

0 x = 0

1 x 6= 0.
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If f(x) > f(y), then f(λx+ (1− λ)y) > f(y) for every λ ∈ (0, 1) (since f(x) > f(y) implies

y = 0). But f is not quasiconcave, as {x : f(x) ≥ 1} is not convex.

Exercise 3.11. Let C be a convex set in Rm. Let f be a lower semicontinuous quasiconcave

function on C that has no local maxima. Then f is explicitly quasiconcave.

Corollary 3.12. Suppose f is concave on a convex neighborhood C ⊂ Rn of x∗, and

differentiable at x∗. If f ′(x∗) = 0, then f has a global maximum over C at x∗.

Theorem 3.13 (Local maxima of explicitly quasiconcave functions). Let f : C → R be an

explicitly quasiconcave function (C convex). If x∗ is a local maximizer of f , then it is a

global maximizer of f over C.

Proof. Let x belong to C and suppose f(x) > f(x∗). Then by the definition of explicit

quasiconcavity, for any 1 > λ > 0, f(λx+ (1− λ)x∗) > f(x∗). Since λx+ (1− λ)x∗ → x∗ as

λ→ 0 this contradicts the fact that f has a local maximum at x∗.
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Lecture 4

Production and Returns to Scale

4.1 Production

We now start to worry about where supply comes from.

We start with the special case of a producer that produces exactly one output from m

inputs.

Production functions

When there is only one output, a production function f is often used to describe feasibility.

With a production function the inputs as well as the outputs are represented by nonnegative

numbers. If (x1, . . . , xm) represent the levels of inputs 1, . . . ,m, then f(x1, . . . , xm) is the

quantity of output generated.

The partial derivative Dif(x) = ∂f(x)
∂xi

is the marginal product of factor i.

An isoquant is just a level curve of the production function f . That is, it is a set of the

form

{x ∈ Rm : f(x) = y},

where y is the level of output. If the production function is monotonic and differentiable,

then isoquants are surfaces, and we can compute their slope as follows:

For simplicity consider only two inputs, x1 and x2. An isoquant implicitly defines x2 as

a function of x1 via the relation

f(x1, x2) = y.
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Let x̂2(x1) make this explicit, that is,

f(x1, x̂2(x1)) = y for all x1.

The left hand side is now just a function of x1, and it is a constant function. Therefore its

derivative is zero. By the chain rule, then

D1f +D2f · x̂′2 = 0,

so

x̂′2(x1) = −D1f

D2f

∣∣∣(
x1,x̂2(x1)

).
This is thus the slope of the isoquant. It is also called the technical rate of substitution.

Definition 4.1 (Constant returns to scale). Function f satisfies constant returns to scale if

for all x ∈ Rm
+ and all λ > 0,

f(λx) = λf(x).

Production sets

We now consider a way to describe producers that can potentially produce many commodi-

ties.

If there are m commodities, a point y in Rm can be used to represent a production

plan, where yi indicates the quantity of good i used or produced. The sign convention is

that yi > 0 indicates that good i is an output and yi < 0 indicates that it is an input. The

technology set Y ⊂ Rm is the set of feasible plans.

x = y ⇔ xi ≥ yi, i = 1, . . . , n

x > y ⇔ xi ≥ yi, i = 1, . . . , n and x 6= y

x� y ⇔ xi > yi, i = 1, . . . , n

Orderings on Rn.

A plan y ∈ Y is (technologically) efficient if there is no y′ ∈ Y such that y′ > y.

A transformation function is a function T : Rm → R such that T (y) ≥ 0 if and only if

y ∈ Y and T (y) = 0 if and only if y is efficient.

————————————
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4.2 Profit Maximization

Now introduce price vectors p ∈ Rm
++. Describe the geometry of the dot product and how it

relates to

max p · y over Y.

The optimal profit function π(p). Mention the support function theorem.

Production function approach

Introduce the wage vector.

max
x

pf(x)− w · x.

Let x∗ be the optimal input combination, known as the factor demand function. The

optimal profit function

π(p, w) = pf(x∗(p, w))− w · x∗(p, w).

By the Envelope Theorem we have
∂π

∂wi
= −x∗i .

4.3 Constant returns to scale

Recall that a production function f : Rn
+ → R exhibits constant returns to scale if for

all x ∈ Rn
+ and all λ > 0,

f(λx) = λf(x).

Letting x = 0 we see that f(0) = λf(0), so f(0) = 0.

Homogeneous functions

Let f : Rn
+ → R. We say that f is homogeneous of degree k if for all x ∈ Rn

+ and all

λ > 0,

f(λx) = λkf(x).

Remark 4.2 (Euler’s theorem). Let f : Rn
+ → R be continuous, and also differentiable on
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Rn
++. Then f is homogeneous of degree k if and only if for all x ∈ Rn

++,

kf(x) =
n∑
i=1

Dif(x)xi. ((∗))

Corollary 4.3. Let f : Rn
+ → R be continuous and differentiable on Rn

++. If f is homoge-

neous of degree k, then Djf(x) is homogeneous of degree k − 1.

Proposition 4.4 (Everything is constant returns to scale). Given f : Rm → R define

g : Rm+1 → R by

g(x1, . . . , xm, z) = zf
(x1
z
, . . . ,

xm
z

)
.

Then

g(λ(x, z)) = λzf

(
λx1
λz

, . . . ,
λxm
λz

)
= λ

{
zf
(x1
z
, . . . ,

xm
z

)}
= λg(x, z).

Quasiconcavity and constant returns to scale

The next result has applications to production functions.

Theorem 4.5. Let f : Rn
+ → R+ be nonnegative, nondecreasing, quasiconcave, and positively

homogeneous of degree k where 0 < k ≤ 1. Then f is concave.

Proof. Let x, y ∈ Rn and suppose first that f(x) = α > 0 and f(y) = β > 0. (The case

α = 0 and/or β = 0 will be considered in a moment.) Then by homogeneity,

f

(
x

α
1
k

)
= f

(
y

β
1
k

)
= 1

By quasiconcavity,

f

(
λ
x

α
1
k

+ (1− λ)
y

β
1
k

)
≥ 1

for 0 ≤ λ ≤ 1. So setting λ = α
1
k

α
1
k+β

1
k

, we have

f

(
x

α
1
k + β

1
k

+
y

α
1
k + β

1
k

)
≥ 1.

By homogeneity,

f(x+ y) ≥ (α
1
k + β

1
k )k =

[
f(x)

1
k + f(y)

1
k

]k
. (4.1)
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Observe that since f is nonnegative and nondecreasing, (4.1) holds even if f(x) = 0 or

f(y) = 0. Now replace x by µx and y by (1− µ)y in (4.1), where 0 ≤ µ ≤ 1, to get

f(µx+ (1− µ)y) ≥
[
f(µx)

1
k + f((1− µ)y)

1
k

]k
=

[
µf(x)

1
k + (1− µ)f(y)

1
k

]k
≥ µ

(
f(x)

1
k

)k
+ (1− µ)

(
f(y)

1
k

)k
= µf(x) + (1− µ)f(y),

where the last inequality follows from the concavity of γ 7→ γk. Since x and y are arbitrary,

f is concave.

An application to the Cobb–Douglas function

Proposition 4.6. The Cobb–Douglas function defined by

f(x1, . . . , xn) = xα1
1 xα2

2 . . . , xαnn ,

where αi > 0, i = 1, . . . , n, and
∑

i αi ≤ 1, is a concave function.

Proof. Start by observing the extended-real valued function x 7→ lnx is strictly concave

on R+, since its second derivative is everywhere strictly negative. Therefore the function

(x1, . . . , xn) 7→ lnxi is concave on Rn
+ for each i. Since nonnegative scalar multiples and

sums of concave functions are concave, the function

φ : (x1, . . . , xn) 7→
n∑
i=1

αi lnxi

is concave and therefore quasiconcave. Now the function y 7→ ey is strictly monotonic, so its

composition with φ, namely

f(x1, . . . , xn) = eφ(x) = xα1
1 xα2

2 . . . xαnn ,

is quasiconcave. But f is homogeneous of degree α = α1 + . . .+ αn ≤ 1, so by Theorem 4.5,

it is concave.
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4.4 Constant Returns and Profit Maximization

An important and somewhat counterintuitive property of constant returns to scale produc-

tion is this.

If a production function f exhibits constant returns to scale and if the problem

max
x

π(x) = pf(x)− w · x

has a solution, then the optimal profit is zero.

The proof is simple. By constant returns f(0) = f(0x) = 0f(x) = 0 for any x, so f(0) = 0,

and it thus always possible to earn a profit of zero by setting x = 0. On the other hand if

pf(x̄) − w · x̄ > 0, then no profit maximizer can exist, because if π(x̄) > 0, then π(2x̄) =

2π(x̄) > π(x̄).

So the only way a profit maximizer can exist is if the maximal profit is zero. This implies

a very special relationship between p and w1, . . . , wn must exist. For instance, in the case

of one input (n = 1), constant returns to scale and monotonicity imply that f(x) is of the

form f(x) = αx for some α > 0. Then the producer wants to maximize

pαx− wx = (αp− w)x

over the interval [0,∞). This is a linear function of x and achieves a unique maximum at

x = 0 if αp < w, and if αp = w, then every x ≥ 0 maximizes profit. In this case, the supply

curve is vertical at p = w/α, so it isn’t really a supply function. Instead we call it a supply

correspondence, and it is undefined for p > α/w.

More generally, if there are n > 1 inputs and x∗ � 0 maximizes profit, the first order

conditions tell us that

p
∂f(x∗)

∂xi
= wi, i = 1, . . . , n,

so and Euler’s theorem yields

pf(x∗) = p
n∑
i=1

∂f(x∗)

∂xi
x∗i =

n∑
i=1

wix
∗
i = w · x∗,

again the profit pf(x∗)− w · x∗ = 0.
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4.5 Per capita analysis and macroeconomics

In a simple model of the macroeconomy, there is one good, output, which may either be

consumed or saved to become part of the capital stock K. Output is produced from capital

and labor according to the aggregate production function F ,

Y = F (K,L),

Y is the flow of real output, and K is the capital stock, and L is the flow of labor supply. If

F exhibits constant return to scale,

F (λK, λL) = λF (K,L),

Euler’s theorem tells us that

FK(K,L)K + FL(K,L)L = F (K,L).

We may also analyze the economy in per capita terms. Define

y =
Y

L
k =

K

L
.

Then

y =
F (K,L)

L
= F (K/L,L/L︸︷︷︸

=1

) = f(k).

Savings and Population Dynamics

We now make everything a function of time t. Start by assuming a constant rate of growth

of the labor supply:
L̇(t)

L(t)
= n or L(t) = L0e

nt

where the dot denotes differentiation with respect to time t, and n is an exogenous constant.

If there is no depreciation of capital, and a constant fraction s of output is saved, then

K̇(t) = sY (t).
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We may write K in terms of k as

K(t) = k(t)L(t)

which implies

K̇ = k̇L+ nkL.

But we may also write K̇ in terms of Y as

K̇(t) = sY (t) = sL(t)f(k(t))

Combining these two expressions for K̇ gives

(k̇ + nk)L = sLf(k)

or

k̇ + nk = sf(k)

So

k̇(t) = sf((k(t))− nk(t) (4.2)

and

ẏ(t) = f ′((k(t))k̇(t).

Example: Cobb–Douglas Production (Solow)

For the case

F (K,L) = KαL1−α

we have

f(k) = kα

so (4.2) becomes

k̇ = skα − nk.

The solution to this differential equation is

k(t) =
[(
k1−α0 − s

n

)
e−n(1−α)t +

s

n

] 1
1−α
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So

k(t)→ k∗ =
( s
n

) 1
1−α

y(t)→ y∗ =
( s
n

) α
1−α

And growth stops.
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Lecture 5

Convex Analysis and Support

Functions

5.1 Geometry of the Euclidean inner product

The Euclidean inner product of p and x is defined by

p · x =
m∑
i=1

pixi

Properties of the inner product include:

1. p · p ≥ 0 and p 6= 0⇒ p · p > 0

2. p · x = x · p

3. p · (αx+ βy) = α(p · x) + β(p · y)

4. |p| = (p · p)1/2

5. p · x = |p| |x| cos θ, where θ is the angle between p and x.

To see that

x · y = |x| |y| cos θ,

where θ is the angle between x and y, orthogonally project y on the space spanned by x.

That is, write y = αx+ z where z · x = 0. Thus

z · x = (y − αx) · x = y · x− αx · x = 0 ⇒ α = x · y/x · x.
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Referring to figure 5.1 we see that

cos θ = α|x|/|y| = x · y/|x| |y|.

For a nonzero p ∈ Rm,

Figure 5.1: Dot product and angles

{x ∈ Rm : p · x = 0}

is a linear subspace of dimension m − 1. It is the subspace of all vectors x making a right

angle with p.

Figure 5.2: Sign of the dot product

A set of the form

{x ∈ Rm : p · x = c}, p 6= 0

is called a hyperplane. To visualize the hyperplane H = {x : p · x = c} start with the

vector αp ∈ H, where α = c/p · p. Draw a line perpendicular to p at the point αp. For any x

on this line, consider the right triangle with vertices 0, (αp) and x. The angle x makes with

p has cosine equal to ‖αp‖/‖x‖, so p · x = ‖p‖ ‖x‖ ‖αp‖/‖x‖ = αp · p = c. That is, the line

lies in the hyperplane H. See figure 5.3.
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Figure 5.3: A hyperplane

5.2 Production sets

We now consider a way to describe producers that can potentially produce many commodi-

ties. Multiproduct producers are by far more common than single-product producers.

If there are m commodities altogether (inputs, outputs, intermediate goods), a point y

in Rm can be used to represent a production plan, where yi indicates the quantity of good

i used or produced. The sign convention is that yi > 0 indicates that good i is an output

and yi < 0 indicates that it is an input. The technology set Y ⊂ Rm is the set of feasible

plans.

x = y ⇔ xi ≥ yi, i = 1, . . . , n

x > y ⇔ xi ≥ yi, i = 1, . . . , n and x 6= y

x� y ⇔ xi > yi, i = 1, . . . , n

Orderings on Rn.

A plan y ∈ Y is (technologically) efficient if there is no y′ ∈ Y such that y′ > y. A

transformation function is a function T : Rm → R such that T (y) ≥ 0 if and only if

y ∈ Y and T (y) = 0 if and only if y is efficient.

5.3 Maximizing a linear function

Given a production set Y ⊂ Rm obeying our sign convention, and a nonzero vector of prices

p, the profit maximization problem is to

max
y∈Y

p · y.
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This is because outputs have a positive sign, so if yj > 0, then pjyj is output j’s contribution

to revenue, and if yj < 0, then pjyj is input j’s contribution to costs. Note that for inputs,

the price and wage are the same thing.

The profit function assigns the maximized profit to each p:

π(p) = sup
y∈Y

p · y.

Geometrically it amount to finding the “highest” hyperplane orthogonal to p that touches

Y . See figure 5.4.

Figure 5.4: Maximizing profit

5.4 Profit and cost functions

Let A be a subset of Rm. Convex analysts may give one of two definitions for the support

function of A as either an infimum or a supremum. Recall that the supremum of a

set of real numbers is its least upper bound and the infimum is its greatest lower bound.

By convention, if A has no upper bound, supA = ∞ and if A has no lower bound, then

inf A = −∞. For the empty set, supA = −∞ and inf A = ∞; otherwise inf A ≤ supA.

(This makes a kind of sense: Every real number λ is an upper bound for the empty set, since

there is no member of the empty set that is greater than λ. Thus the least upper bound

must be −∞. Similarly, every real number is also a lower bound, so the infimum is ∞.)

Thus support functions (as infima or suprema) may assume the values ∞ and −∞.

By convention, 0 ·∞ = 0; if λ > 0 is a real number, then λ ·∞ =∞ and λ · (−∞) = −∞;

and if λ < 0 is a real number, then λ · ∞ = −∞ and λ · (−∞) =∞. These conventions are

used to simplify statements involving positive homogeneity.
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Rather than choose one definition, I shall give the two definitions different names derived

by the sort of economic interpretation I want to give them.

The profit function πA of A is defined by

πA(p) = sup
y∈A

p · y.

The cost function cA of A is defined by

cA(p) = inf
y∈A

p · y.

5.5 Introduction to convex analysis

A subset of a vector space is convex if it includes the line segment joining any two of its

points. That is, C is convex if for each pair x, y of points in C, the line segment

{λx+ (1− λ)y : λ ∈ [0, 1]}

is included in C. Intuitively a convex set has no holes or dents.

The convex hull of a set A ⊂ Rn, denoted coA, is the smallest convex set that includes

A. You can think of it as filling in any holes or dents. It consists of all points of the form

m∑
i=1

λixi

where each xi ∈ A, each λi > 0, and
∑m

i=1 λi = 1. The closed convex hull, coA, is the

smallest closed convex set that includes A. It is the closure of coA.

Result 5.1 (Carathéodory’s Theorem). In the above sum, m need be no larger than n+ 1.

(Remember, n is the dimension of the space.)

5.6 Concave and convex functions

An extended real-valued function f on a convex set C is concave if its hypograph

{(x, α) ∈ Rm : f(x) ≥ α}
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is a convex set, or equivalently if

f((1− λ)x+ λy) ≥ (1− λ)f(x) + λf(y), (0 < λ < 1).

Figure 5.5: A concave function

An extended real-valued function f on a convex set C is convex if its epigraph

{(x, α) ∈ Rm : f(x) ≤ α}

is a convex set. Equivalently if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), (0 < λ < 1).

A function f is convex if and only if −f is concave. A function f : C → R on a convex

Figure 5.6: The supremum of convex functions is convex
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subset C of a vector space is:

• concave if

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

• strictly concave if

f(λx+ (1− λ)y) > λf(x) + (1− λ)f(y)

for all x, y in C with x 6= y and all 0 < λ < 1. It is convex if −f is concave, etc.

Proposition 5.2. The pointwise supremum of a family of convex functions is convex. The

pointwise infimum of family of concave functions is concave.

To see why this is true, note that the epigraph of the supremum of a family is the

intersection of their epigraphs; and the intersection of convex sets is convex.

5.7 Convexity of the profit function

Proposition: πA is convex, lower semicon-

tinuous, and positively homogeneous of de-

gree 1.

Proposition: cA is concave, upper semicon-

tinuous, and positively homogeneous of de-

gree 1.
Proof. Fix p0, p1, define pλ = λp1 + (1− λ)p0, and for λ ∈ [0, 1], let xλ maximize pλ · x over

A.

πA(p0) = p0 · x0 ≥ p0 · xλ

πA(p1) = p1 · x1 ≥ p1 · xλ

So

(1− λ)πA(p0) ≥ (1− λ)p0 · xλ

λπA(p1) ≥ λp1 · xλ

Adding gives:

λπA(p1) + (1− λ)πA(p0) ≥ (λp1 + (1− λ)p0) · xλ

= pλ · xλ

= πA(pλ)

= πA(λp1 + (1− λ)p0)

42



Theory of Value: EC 121a Fall 2021

Positive homogeneity of πA is obvious given

the conventions on multiplication of infini-

ties. To see that it is convex, let gx be

the linear (hence convex) function defined

by gx(p) = x ·p. Then πA(p) = supx∈A gx(p).

Since the pointwise supremum of a family

of convex functions is convex, πA is convex.

Also each gx is continuous, hence lower semi-

continuous, and the supremum of a family

of lower semicontinuous functions is lower

semicontinuous.

Positive homogeneity of cA is obvious given

the conventions on multiplication of infini-

ties. To see that it is concave, let gx be the

linear (hence concave) function defined by

gx(p) = x · p. Then cA(p) = infx∈A gx(p).

Since the pointwise infimum of a family of

concave functions is concave, cA is concave.

Also each gx is continuous, hence upper

semicontinuous, and the infimum of a family

of upper semicontinuous functions is upper

semicontinuous.

Proposition: The set

{p ∈ Rm : πA(p) <∞}

is a closed convex cone, called the effective

domain of πA, and denoted domπA.

The effective domain will always include the

point 0 provided A is nonempty. By conven-

tion π∅(p) = −∞ for all p, and we say that

π∅ is improper. If A = Rm, then 0 is the

only point in the effective domain of πA.

Proposition: The set

{p ∈ Rm : cA(p) > −∞}

is a closed convex cone, called the effective

domain of cA, and denoted domcA.

The effective domain will always include the

point 0 provided A is nonempty. By conven-

tion c∅(p) =∞ for all p, and we say that c∅

is improper. If A = Rm, then 0 is the only

point in the effective domain of cA.

It is easy to see that the effective domain

domπA of πA is a cone, that is, if p ∈ domπA,

then λp ∈ domπA for every λ ≥ 0. (Note

that {0} is a (degenerate) cone.)

It is also straightforward to show that

domπA is convex. For if πA(p) < ∞ and

πA(q) < ∞, for 0 ≤ λ ≤ 1, by convexity of

πA, we have

πA(λp+ (1− λ)q) ≤ λπA(p) + (1− λ)πA(q)

<∞.

It is easy to see that the effective domain

domcA of cA is a cone, that is, if p ∈ domcA,

then λp ∈ domcA for every λ ≥ 0. (Note

that {0} is a (degenerate) cone.)

It is also straightforward to show that domcA

is convex. For if cA(p) > −∞ and cA(q) >

−∞, for 0 ≤ λ ≤ 1, by concavity of cA, we

have

cA(λx+ (1− λ)y) ≥ λcA(p) + (1− λ)cA(q)

> −∞.
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The closedness of domπA is more difficult. The closedness of domcA is more difficult.

5.8 When do maximizers and minimizers exist?

Let K ⊂ Rn be closed and bounded. Let f : K → R be continuous. Then f has a maximizer

and minimizer in K.

More generally, let K be a compact subset of a metric space. If f is upper semicontinuous,

then f has a maximizer in K, and if f is lower semicontinuous, then f has a minimizer in

K.

5.9 Recoverability

Separating Hyperplane Theorem If A

is a nonempty closed convex set, and x does

not belong to A, then there is a nonzero p

satisfying

p · x > πA(p).

Separating Hyperplane Theorem If A

is a nonempty closed convex set, and x does

not belong to A, then there is a nonzero p

satisfying

p · x < cA(p).

Proposition: The closed convex hull coA

of A satisfies

coA =

{y ∈ Rm : ∀p ∈ Rmp · y ≤ πA(p)}.

Proposition: The closed convex hull coA

of A satisfies

coA =

{y ∈ Rm : ∀p ∈ Rmp · y ≥ cA(p)}.

Proposition: If f is continuous on its effec-

tive domain, convex, and positively homoge-

neous of degree 1, define

A =

{y ∈ Rm : ∀p ∈ Rmp · y ≤ f(p)}.

Then A is closed and convex and

f = πA.

Proposition: If f is continuous on its effec-

tive domain, concave, and positively homo-

geneous of degree 1, define

A =

{y ∈ Rm : ∀p ∈ Rmp · y ≥ f(p)}.

Then A is closed and convex and

f = cA.
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5.10 Recovering an input requirement set

The input requirement set is the set of inputs that allow the producer to produce an

output level of at least y. Knowing the cost function as a function of w, the vector of input

wages. figure 5.7a shows the intersection of a few sets of the form {x ∈ Rm : w ·x ≥ c(w; y)}
for the production function f(x1, x2) = x

1/2
1 x

1/2
2 . But if the input requirement set is not

convex, you will recover its closed convex hull, see figure 5.7b, for the production function

f(x1, x2) = max{x5/61 x
1/6
2 , x

1/6
1 x

5/6
2 }.

(a) (b)

Figure 5.7

5.11 Concavity and maxima

Proposition 5.3. If f is a concave function on a convex set and x∗ is a local maximizer,

then it is a global maximizer.

Proof. Prove the contrapositive: Suppose x∗ is not a global maximizer. Let

f(x̂) > f(x∗).

Then for 0 < λ < 1,

λf(x̂) + (1− λ)f(x∗) > f(x∗).
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By concavity

f(λx̂+ (1− λ)x∗) ≥ λf(x̂) + (1− λ)f(x∗) > f(x∗),

but λx̂+ (1− λ)x∗ → x∗ as λ→ 0, so x∗ is not a local maximizer.

5.12 Supergradients and first order conditions

Definition 5.4. Let f : Rn → R be concave. A vector p is a supergradient of f at the

point x if for every y it satisfies the supergradient inequality,

f(x) + p · (y − x) ≥ f(y).

Similarly, if f is convex, then p is a subgradient of f at x if

f(x) + p · (y − x) ≤ f(y)

for every y.

For concave f , the set of all supergradients of f at x is called the superdifferential of

f at x, and is denoted ∂f(x). If the superdifferential is nonempty at x, we say that f is

superdifferentiable at x.

For convex f the same symbol ∂f(x) denotes the set of subgradients and is called the

subdifferential. If it is nonempty we say that f is subdifferentiable.

Theorem 5.5 (Gradients are supergradients). Assume f is concave on a convex set C ⊂ Rn,

and differentiable at the point x. Then for every y in C,

f(x) + f ′(x) · (y − x) ≥ f(y). (5.1)

If instead f is convex, then the above inequality is reversed.

Proof. Let y ∈ C. Rewrite the definition of concavity as

f
(
x+ λ(y − x)

)
≥ f(x) + λ

(
f(y)− f(x)

)
.

Rearranging and dividing by λ > 0,

f
(
x+ λ(y − x)

)
− f(x)

λ
≥ f(y)− f(x).
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Letting λ ↓ 0, the left hand side converges to f ′(x) · (y − x).

For concave/convex functions the first order conditions for an extremum are sufficient.

Theorem 5.6 (First order conditions for concave functions). Suppose f is concave on a

convex set C ⊂ Rn. A point x∗ in C is a global maximum point of f if and only if 0 belongs

to the superdifferential ∂f(x∗).

Suppose f is convex on a convex set C ⊂ Rn. A point x∗ in C is a global minimum point

of f if and only if 0 belongs to the superdifferential ∂f(x∗).

Proof. Note that x∗ is a global maximum point of f if and only if

f(x∗) + 0 · (y − x∗) ≥ f(y)

for all y in C, but this is just the supergradient inequality for 0.

Corollary 5.7. If f is concave and f ′(x∗) = 0, then x∗ is a global maximizer. If f is convex

and f ′(x∗) = 0, then x∗ is a global minimizer.

Proof. The graph of a concave function lies below a horizontal line at x∗, see (5.1).

A function need not be differentiable to have sub/supergradients.

Theorem 5.8 (Subdifferentiability). A convex function on a convex subset of Rn is subdif-

ferentiable at each point of the relative interior of its domain.

A concave function on a convex subset of Rn is superdifferentiable at each point of the

relative interior of its domain.

Fact 5.9. If f is concave, then f differentiable at x if and only if its superdifferential ∂f(x)

is a singleton, in which case ∂f(x) = f ′(x).

If f is convex, then f differentiable at x if and only if its subdifferential ∂f(x) is a

singleton, in which case ∂f(x) = f ′(x).

5.13 Jensen’s Inequality

Result 5.10. Let f be a concave function, and let X be a random variable taking values in

the domain of f , with |EX| <∞. Then

f(EX) ≥ Ef(X).
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“Proof:” Evaluate (5.1) at EX:

f(EX) + f ′(EX)(X − EX) ≥ f(X) for allX

and take expectations:

f(EX) + f ′(EX)E(X − EX)︸ ︷︷ ︸
=0

≥ Ef(X).

(The result is true even f is not differentiable at EX.)

5.14 Concavity and second derivatives

Fact 5.11. Let f be differentiable on an open interval in R.

Then f is concave if and only if f ′ is nonincreasing.

If f is concave and twice differentiable at x, then f ′′(x) ≤ 0.

If f is everywhere twice differentiable with f ′′ ≤ 0, then f is concave.

If f is everywhere twice differentiable with f ′′ < 0, then f is strictly concave.

Fact 5.12. If f : C ⊂ Rn → R is twice differentiable, then the Hessian Hf is everywhere

negative semidefinite if and only if f is concave. If Hf is everywhere negative definite, then

f is strictly concave.

5.15 The subdifferential of the profit function

∂πA(p) = {x ∈ coA : p · x = πA(p)}

Extremizers are subgradients
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Proposition: If ỹ(p) maximizes p over A,

that is, if ỹ(p) belongs to A and p·ỹ(p) ≥ p·y
for all y ∈ A, then ỹ(p) is a subgradient of

πA at p. That is,

πA(p) + ỹ(p) · (q − p) ≤ πA(q) (∗)

for all q ∈ Rm.

Proposition: If ŷ(p) minimizes p over A,

that is, if ŷ(p) belongs to A and p·ŷ(p) ≤ p·y
for all y ∈ A, then ŷ(p) is a supergradient of

cA at p. That is,

cA(p) + ŷ(p) · (q − p) ≥ cA(q) (∗)

for all q ∈ Rm.

To see this, note that for any q ∈ Rm, by

definition we have

q · ỹ(p) ≤ πA(q).

Now add πA(p)−p · ỹ(p) = 0 to the left hand

side to get the subgradient inequality.

To see this, note that for any q ∈ Rm, by

definition we have

q · ŷ(p) ≥ cA(q).

Now add cA(p)−p · ŷ(p) = 0 to the left hand

side to get the supergradient inequality.

Note that πA(p) may be finite for a closed

convex set A, and yet there may be no max-

imizer. For instance, let

A = {(x, y) ∈ R2 : x < 0, y < 0, xy ≥ 1}.

Then for p = (1, 0), we have πA(p) = 0

as (1, 0) · (−1/n,−n) = −1/n, but (1, 0) ·
(x, y) = x < 0 for each (x, y) ∈ A. Thus

there is no maximizer in A.

Note that xA(p) may be finite for a closed

convex set A, and yet there may be no min-

imizer. For instance, let

A = {(x, y) ∈ R2 : x > 0, y > 0, xy ≥ 1}.

Then for p = (1, 0), we have πA(p) = 0 as

(1, 0) · (1/n, n) = 1/n, but (1, 0) · (x, y) =

x > 0 for each (x, y) ∈ A. Thus there is no

minimizer in A.

It turns out that if there is no maximizer of

p, then πA has no subgradient at p. In fact,

the following is true, but I won’t present the

proof, which relies on the Separating Hyper-

plane Theorem.

It turns out that if there is no minimizer of

p, then cA has no supergradient at p. In fact,

the following is true, but I won’t present the

proof, which relies on the Separating Hyper-

plane Theorem.

Theorem: If A is closed and convex, then

x is a subgradient of πA at p if and only if

x ∈ A and x maximizes p over A.

Theorem: If A is closed and convex, then

x is a supergradient of cA at p if and only if

x ∈ A and x minimizes p over A.
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5.16 Hotelling’s Lemma

If x is the unique profit maximizer at prices p in the convex set A, then πA is differentiable

at p and ∇πA(p) = x. [
Dijπ

∗(p)
]

=
[
Djy

∗
i (p)

]
=
[
∂y∗i (p)

∂pj

]
is symmetric and positive semidefinite. Consequently,

Diy
∗
i (p) =

∂y∗i (p)

∂pi
≥ 0.

Comparative statics

Proposition: Consequently, if A is closed

and convex, and ỹ(p) is the unique maxi-

mizer of p over A, then πA is differentiable

at p and

ỹ(p) = π′A(p). (∗∗)

Proposition: Consequently, if A is closed

and convex, and ŷ(p) is the unique minimizer

of p over A, then cA is differentiable at p and

ŷ(p) = c′A(p). (∗∗)
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One way to see this is to consider q of the

form p ± λei, where ei is the i-th unit coor-

dinate vector, and λ > 0.

The subgradient inequality for q = p+λei is

ỹ(p) · λei ≤ πA(p+ λei)− πA(p)

and for q = p− λei is

−ỹ(p) · λei ≤ πA(p− λei)− πA(p).

Dividing these by λ and −λ respectively

yields

y∗i (p) ≤
πA(p+ λei)− πA(p)

λ

y∗i (p) ≥
πA(p− λei)− πA(p)

λ
.

so

πA(p−λei)−πA(p)
λ

≤ y∗i (p) ≤ πA(p+λe
i)−πA(p)
λ

.

Letting λ ↓ 0 yields ỹi(p) = DiπA(p).

One way to see this is to consider q of the

form p ± λei, where ei is the i-th unit coor-

dinate vector, and λ > 0.

The supergradient inequality for q = p+λei

is

ŷ(p) · λei ≥ cA(p+ λei)− cA(p)

and for q = p− λei is

−ŷ(p) · λei ≥ cA(p− λei)− cA(p).

Dividing these by λ and −λ respectively

yields

y∗i (p) ≥
cA(p+ λei)− cA(p)

λ

y∗i (p) ≤
cA(p− λei)− cA(p)

λ
.

so

cA(p+λe
i)−cA(p)
λ

≤ y∗i (p) ≤ cA(p−λei)−cA(p)
λ

.

Letting λ ↓ 0 yields ŷi(p) = DicA(p).

Proposition: Thus if πA is twice differen-

tiable at p, that is, if the maximizer ỹ(p) is

differentiable with respect to p, then the i-th

component satisfies

Djy
∗
i (p) = DijπA(p). (∗∗∗)

Proposition: Thus if cA is twice differen-

tiable at p, that is, if the minimizer ŷ(p) is

differentiable with respect to p, then the i-th

component satisfies

Djy
∗
i (p) = DijcA(p). (∗∗∗)

Consequently, the matrix[
Djy

∗
i (p)

]
is positive semidefinite.

Consequently, the matrix[
Djy

∗
i (p)

]
is negative semidefinite.

In particular,

Diỹi ≥ 0.

In particular,

Diŷi ≤ 0.
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Even without twice differentiability, from

the subgradient inequality, we have

πA(p) + ỹ(p) · (q − p) ≤ πA(q)

πA(q) + ỹ(q) · (p− q) ≤ πA(p)

so adding the two inequalities, we get

(
ỹ(p)− ỹ(q)

)
· (p− q) ≥ 0.

Even without twice differentiability, from

the supergradient inequality, we have

cA(p) + ŷ(p) · (q − p) ≥ cA(q)

cA(q) + ŷ(q) · (p− q) ≥ cA(p)

so adding the two inequalities, we get

(
ŷ(p)− ŷ(q)

)
· (p− q) ≤ 0.

Proposition: Thus if q differs from p only

in its i-th component, say qi = pi+4pi, then

we have

4ỹi4pi ≥ 0.

Dividing by the positive quantity (4pi)2
does not change this inequality, so

4ỹi
4pi

≥ 0.

Proposition: Thus if q differs from p only

in its i-th component, say qi = pi+4pi, then

we have

4ŷi4pi ≤ 0.

Dividing by the positive quantity (4pi)2
does not change this inequality, so

4ŷi
4pi

≤ 0.
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Lecture 6

Production Functions, Cost

Minimization, and Lagrange

Multipliers

6.1 Cost minimization and convex analysis

When there is a production function f for a single output producer with n inputs, the input

requirement set for producing output level y is

V (y) = {x ∈ Rn : f(x) ≥ y}.

The cost function for the producer facing wage vector w = (w1, . . . , wn) is the support

function

c(w, y) = inf{w · x : f(x) ≥ y}.

The Support Function Theorem tells us that holding y fixed, c is concave in w, and if x∗ is

the unique cost minimizer, then
∂c

∂wi
= x∗i

and when c is twice differentiable in w, the Hessian matrix[
∂2c

∂wi∂wj

]
=

[
∂x∗i
∂wj

]
is symmetric and negative semidefinite.

But the Support Function Theorem doesn’t tell us that c is twice differentiable or how

it depends on y. When the production function f is differentiable, we can use the Lagrange
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Multiplier Theorem to find additional results.

6.2 Classical Lagrange Multiplier Theorem

Definition 6.1. A constrained optimization problem is characterized by an objective

function f and m constraint functions, g1, . . . , gm. The constraints take the form of either

equality constraints (gi(x) = 0, i = 1, . . . ,m) or inequality constraints (gi(x) ≥ 0,

i = 1, . . . ,m).

A point x∗ is a constrained local maximizer of f subject to the equality constraints

g1(x) = 0, g2(x) = 0, . . . , gm(x) = 0 in some neighborhood W of x∗ if x∗ satisfies the

constraints and also satisfies f(x∗) ≥ f(x) for all x ∈ W that also satisfy the constraints.

A constrained local minimizer is defined similarly, and the case of inequality con-

straints is also dealt with as you should expect.

Frequently, the true constraints are inequality constraints, but we can see that at an ex-

tremum, those will be satisfied as equalitiesx, and we may write them as equality constraints.

Associated with such a problem is a function called the Lagrangian:

L(x;λ) = f(x) + λ · g(x) = f(x) + λ1g1(x) + · · ·+ λmgm(x).

The numbers λi are called Lagrange multipliers.

Result 6.2 (Lagrange Multiplier Theorem). Let X ⊂ Rn, and let f, g1, . . . , gm : X → R
be continuous. Let x∗ be an interior constrained local maximizer of f subject to g(x) = 0.

Suppose f , g1, . . . , gm are differentiable at x∗, and that the Lagrange Constraint Qualification

holds, that is, g1
′(x∗), . . . , gm

′(x∗) are linearly independent.

Then there exist real numbers λ∗1, . . . , λ
∗
m, such that

f ′(x∗) +
m∑
i=1

λ∗i gi
′(x∗) = 0.

Remark 6.3. The way I wrote the Lagrangian above is the preferred way to write the

Lagrangian for maximization. For minimization, the preferred way to write the Lagrangian

is

L(x;λ) = f(x)− λ · g(x) = f(x)− λ1g1(x)− · · · − λmgm(x).x

There is no need to do this unless you care bout the sign of the multipliers (and I do). Also,

the constraint g(x) = 0 is the same as the constraint −g(x) = 0, so when deciding how to
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write the constraint, if there is a true inequality constraint g(x) ≥ 0 that we know a priori

must hold with equality, write the equality constraint as g(x) = 0. This will become clearer

wen you look at the examples in what follows.

6.3 Using the LMT

Since the LMT tells us what is true at the optimum, we can sometimes use the necessary

conditions to pin down what the optimum is. For example, the Cobb–Douglas production

function is given by

y = f(x) = γxα1
1 · · ·xαnn ,

where each αi > 0, i = 1, . . . , n. It is homogeneous of degree

α =
n∑
i=1

αi.

This function was proposed by Charles Cobb and Paul Douglas as a model for U.S. GDP,

and it works surprisingly well empirically. When γ = α = 1, it is a weighted geometric mean

of the inputs.

To find the associated cost function we start by writing the Lagrangian for a minimum,

where the true constraint is f(x)− y ≥ 0, as

L(x;λ) = w · x− λ(γxα1
1 · · ·xαnn − y)

The first order conditions, using the binding constraint y = γxα1
1 · · ·xαnn are:

∂L

∂xi
= wi − λαi

y

xi
= 0 i = 1, . . . , n.

So

xi = λαi
y

wi
i = 1, . . . , n. (6.1)

But y = γx1
α1 · · ·xnαn, so

y = γ

n∏
i=1

(
λαi

y

wi

)αi
= γλαyα

n∏
i=1

(
αi
wi

)αi
.
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Solving this for λ gives

λ̂ =

[
γyα−1

n∏
i=1

(
αi
wi

)αi]−1/α

= γ−1/αy(1−α)/α

(
n∏
i=1

α
−αi/α
i

)(
n∏
i=1

wαi/α

)

To simplify notation a bit, set

βi =
αi
α
,

b = γ
−1
α ·
∏
i

α−βii ,

so

λ̂ = by(1−α)/α
n∏
i=1

wβii .

Substituting this for λ in (6.1) gives the conditional factor demands

x̂j(y, w) = by(1−α)/α
n∏
i=1

wβii αj
y

wj

=
αj
wj
by1/α

n∏
i=1

wβii ,

for j = 1, . . . , n. So the cost function is

c(y, w) = αby1/α
n∏
i=1

wβii ,

which is a Cobb–Douglas function of ws.

Note that
∂c(y, w)

∂y
= by(1−α)/α

n∏
i=1

wβii = λ̂,

and
∂c(y, w)

∂wj
= α

βj
wj
by(1−α)/α

n∏
i=1

wβii = x̂j(y, w).
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6.4 Second Order Conditions

Theorem 6.4 (Necessary Second Order Conditions for a Maximum). Let U ⊂ Rn and let

x∗ ∈ intU . Let f, g1, . . . , gm : U → R be C2, and suppose x∗ is a local constrained maximizer

of f subject to g(x) = 0. Define the Lagrangian L(x, λ) = f(x) +
∑m

i=1 λigi(x). Assume that

g1
′(x∗), . . . , gm

′(x∗) are linearly independent, so the conclusion of the Lagrange Multiplier

Theorem holds, that is, there are λ∗1, . . . , λ
∗
m satisfying the first order conditions

L′x(x
∗, λ∗) = f ′(x∗) +

m∑
i=1

λ∗i gi
′(x∗) = 0.

Then
n∑
i=1

n∑
j=1

DijL(x∗, λ∗)vivj ≤ 0,

for all v 6= 0 satisfying gi
′(x∗) · v = 0, i = 1, . . . ,m.

Since minimizing f is the same as maximizing −f , we do not need any new results for

minimization, but there a few things worth pointing out.

The Lagrangian for maximizing −f subject to gi = 0, i = 1, . . . ,m is

−f(x) +
m∑
i=1

λigi(x),

The second order condition for maximizing −f is that

n∑
i=1

n∑
j=1

(
−Dijf(x∗) +

m∑
i=1

λ∗Dijg(x∗)

)
vivj ≤ 0,

for all v 6= 0 satisfying gi
′(x∗) · v = 0, i = 1, . . . ,m. This can be rewritten as

n∑
i=1

n∑
j=1

(
Dijf(x∗)−

m∑
i=1

λ∗Dijg(x∗)

)
vivj ≥ 0,

which explains why I prefer to write the Lagrangian for a minimization problem as

L(x, λ) = f(x)−
m∑
i=1

λigi(x).

The first order conditions will be exactly the same. For the second order conditions we have
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the following.

Theorem 6.5 (Necessary Second Order Conditions for a Minimum). Let U ⊂ Rn and let

x∗ ∈ intU . Let f, g1, . . . , gm : U → R be C2, and suppose x∗ is a local constrained minimizer

of f subject to g(x) = 0. Define the Lagrangian

L(x, λ) = f(x)−
m∑
i=1

λigi(x).

Assume that g1
′(x∗), . . . , gm

′(x∗) are linearly independent, so the conclusion of the Lagrange

Multiplier Theorem holds, that is, there are λ∗1, . . . , λ
∗
m satisfying the first order conditions

L′x(x
∗, λ∗) = f ′(x∗)−

m∑
i=1

λ∗i gi
′(x∗) = 0.

Then
n∑
i=1

n∑
j=1

DijL(x∗, λ∗)vivj ≥ 0,

for all v 6= 0 satisfying gi
′(x∗) · v = 0, i = 1, . . . ,m.

6.5 Envelope Theorem for Constrained Extrema

Theorem 6.6 (Envelope Theorem for Constrained Maximization). Let X ⊂ Rn and P ⊂ Rl

be open, and let f, g1, . . . , gm : X × P → R be C1. For each p ∈ P , let x∗(p) be an interior

constrained local maximizer of f(x, p) subject to g(x, p) = 0. Define the Lagrangian

L(x, λ; p) = f(x, p) +
m∑
i=1

λigi(x, p),

and assume that the conclusion of the Lagrange Multiplier Theorem holds for each p, that is,

there exist real numbers λ∗1(p), . . . , λ
∗
m(p), such that the first order conditions

∂L
(
x∗(p), λ∗(p), p

)
∂x

= f ′x
(
x∗(p), p

)
+

m∑
i=1

λ∗i (p)gi
′
x

(
x∗(p), p

)
= 0

are satisfied. Assume that x∗ : P → X and λ∗ : P → Rm are C1. Set

V (p) = f (x∗(p), p) .
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Then V is C1 and

∂V (p)

∂pj
=
∂L
(
x∗(p), λ∗(p), p

)
∂pj

=
∂f(x∗, p)

∂pj
+

m∑
i=1

λ∗i (p)
∂gi(x

∗, p)

∂pj
.

Proof. Clearly V is C1 as the composition of C1 functions. Since x∗ satisfies the constraints,

we have

V (p) = f (x∗(p), p) = f (x∗(p), p) +
m∑
i=1

λ∗i (p)gi(x
∗, p).

Therefore by the chain rule,

∂V (p)

∂pj
=

(
n∑
k=1

∂f(x∗, p)

∂xk

∂x∗k

∂pj

)
+
∂f(x∗, p)

∂pj

+
m∑
i=1

{
∂λ∗i (p)

∂pj
gi(x

∗, p) + λ∗(p)

[(
n∑
k=1

∂gi(x
∗, p)

∂xk

∂x∗k

∂pj

)
+
∂gi(x

∗, p)

∂pj

]}

=
∂f(x∗, p)

∂pj
+

m∑
i=1

λ∗i (p)
∂gi(x

∗, p)

∂pj

+
m∑
i=1

∂λ∗i (p)

∂pj
gi(x

∗, p) (6.2)

+
n∑
k=1

(
∂f(x∗, p)

∂xk
+

m∑
i=1

λ∗(p)
∂gi(x

∗, p)

∂xk

)
∂x∗k

∂pj
. (6.3)

The theorem now follows from the fact that both terms (6.2) and (6.3) are zero. Term (6.2)

is zero since each gi is zero as x∗ satisfies the constraints, and term (6.3) is zero, as the first

order conditions imply that each ∂f(x∗,p)
∂xk

+
∑m

i=1 λ
∗(p)∂gi(x

∗,p)
∂xk

= 0.

Theorem 6.7 (Envelope Theorem for Minimization). Let X ⊂ Rn and P ⊂ Rl be open, and

let f, g1, . . . , gm : X × P → R be C1. For each p ∈ P , let x∗(p) be an interior constrained

local maximizer of f(x, p) subject to g(x, p) = 0. Define the Lagrangian

L(x, λ; p) = f(x, p)−
m∑
i=1

λigi(x, p),

and assume that the conclusion of the Lagrange Multiplier Theorem holds for each p, that is,

there exist real numbers λ∗1(p), . . . , λ
∗
m(p), such that the first order conditions

∂L
(
x∗(p), λ∗(p), p

)
∂x

= f ′x
(
x∗(p), p

)
−

m∑
i=1

λ∗i (p)gi
′
x

(
x∗(p), p

)
= 0
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are satisfied. Assume that x∗ : P → X and λ∗ : P → Rm are C1. Set

V (p) = f (x∗(p), p) .

Then V is C1 and

∂V (p)

∂pj
=
∂L
(
x∗(p), λ∗(p), p

)
∂pj

=
∂f(x∗, p)

∂pj
−

m∑
i=1

λ∗i (p)
∂gi(x

∗, p)

∂pj
.

The proof is the same as that of Theorem 6.6.

6.6 The Envelope Theorem and Cost Minimization

minimize
∑

iwixi subject to f(x1, . . . , xn) = y

L(x, λ; y, w) =
∑
i

wixi − λ (f(x1, . . . , xn)− y)

c(y, w) =
∑
i

wix̂i(y, w)

By the Envelope Theorem,
∂c

∂y
=
∂L

∂y

∣∣∣∣ x=x̂(y,w)

λ=λ̂(y,w)

= λ̂

The Lagrange multiplier is the marginal cost. Also,

∂c

∂wi
=

∂L

∂wi

∣∣∣∣ x=x̂(y,w)

λ=λ̂(y,w)

= x̂i
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Lecture 7

More about Cost Functions

7.1 Summary of properties of cost functions

Let f be a monotonic production function. The associated cost function c(w, y) is

• continuous

• concave in w

• monotone nondecreasing in (w, y)

• homogeneous of degree one in w, that is, c(λw, y) = λc(w, y) for λ > 0.

Moreover, if x̂(w, y) is the conditional factor demand, then

∂c(w, y)

∂wi
= x̂i(w, y).

7.2 Cost minimization

Mathematically the cost minimization problem can be formulated as follows.

min
x

w · x subject to f(x) ≥ y, x = 0,

where w � 0 and y > 0.

It is clear that if f is monotonic, we may replace the condition f(x) ≥ y by f(x)− y = 0

without changing the solution. Let x̂(w, y) solve this problem, and assume that x̂� 0. The
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Lagrangian for this minimization problem is

w · x− λ
(
f(x)− y

)
.

The gradient of the constraint function (with respect to x) is just f ′(x̂), which is not zero.

Therefore by the Lagrange Multiplier Theorem, there is a Lagrange multiplier λ̂ (depending

on w, y) so that locally the first order conditions

wi − λ̂(w, y)fi
(
x̂(w, y)

)
= 0, i = 1, . . . , n, (7.1)

where fi(x) = ∂f(x)
∂xi

, and the constraint

y − f
(
x̂(w, y)

)
= 0 (7.2)

hold for all w, y. Note that (7.1) implies that λ̂ > 0.

The second order condition is that

λ̂
n∑
i=1

n∑
j=1

fij(x̂)vivj ≤ 0, (7.3)

for all v ∈ Rn satisfying

f ′(x̂) · v =
n∑
i=1

fi(x̂)vi = 0.

Using the method of implicit differentiation with respect to each wj on (7.1) yields:

δij −
∂λ̂

∂wj
fi(x̂)− λ̂

n∑
k=1

fik(x̂)
∂x̂k
∂wj

= 0,
i=1,...,n

j = 1, . . . , n, (7.4)

where δij is the Kronecker delta,

δij =

1 if i = j

0 if i 6= j.

Differentiating (7.1) with respect to y yields

−∂λ̂
∂y
fi(x̂)− λ̂

n∑
k=1

fik(x̂)
∂x̂k
∂y

= 0, i = 1, . . . , n, (7.5)
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Now differentiate (7.2) with respect to each wj to get

−
n∑
k=1

fk(x̂)
∂x̂k
∂wj

= 0, j = 1, . . . , n, (7.6)

and with respect to y to get

−
n∑
k=1

fk(x̂)
∂x̂k
∂y

+ 1 = 0. (7.7)

We can rearrange equations (7.4) through (7.7) into one gigantic matrix equation:



λ̂f11 . . . λ̂f1n f1
...

...
...

...
...

...

λ̂fn1 . . . λ̂fnn fn

f1 . . . fn 0





∂x̂1
∂w1

. . . ∂x̂1
∂wn

∂x̂1
∂y

...
...

...
...

...
...

∂x̂n
∂w1

. . . ∂x̂n
∂wn

∂x̂n
∂y

∂λ̂
∂w1

. . . ∂λ̂
∂wn

∂λ̂
∂y


=



1 0 . . . . . . 0 0

0
. . .

...
...

...
. . . 0

...

0 . . . . . . 0 1 0

0 . . . . . . 0 1


. (7.8)

To see where this comes from, break up the (n+1)×(n+1) matrix equation into four blocks.

The upper left n× n block comes from (7.4). The upper right n× 1 block comes from (7.5).

The lower left 1 × n block comes from (7.6), and finally the lower right 1 × 1 block is just

(7.7). This tells us is that 
. . .

...
(7.4) (7.5)

. . .
...

. . . (7.6) . . . (7.7)


Figure 7.1: The blocks in the matrix version of equations (7.4) through (7.7).



∂x̂1
∂w1

. . .
∂x̂1
∂wn

∂x̂1
∂y

...
...

...
...

...
...

∂x̂n
∂w1

. . .
∂x̂n
∂wn

∂x̂n
∂y

∂λ̂

∂w1

. . .
∂λ̂

∂wn

∂λ̂

∂y


=



λ̂f11 . . . λ̂f1n f1
...

...
...

...
...

...

λ̂fn1 . . . λ̂fnn fn

f1 . . . fn 0



−1

. (7.9)
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So the second order conditions imply that the n× n matrix
∂x̂1
∂w1

. . .
∂x̂1
∂wn

...
...

∂x̂n
∂w1

. . .
∂x̂n
∂wn


is negative semidefinite of rank n− 1, being the upper left block of the inverse of a bordered

matrix that is negative definite under constraint. It follows therefore that

∂x̂i
∂wi
≤ 0 i = 1, . . . , n.

Note that this approach provides us with conditions under which the cost function is twice

continuously differentiable. It follows from (7.9) that if the bordered Hessian is invertible,

the Implicit Function Theorem tells us that x̂ and λ̂ are C1 functions of w and y (since f is

C2). On the other hand, if x̂ and λ̂ are C1 functions of w and y, then (7.8) implies that the

bordered Hessian is invertible. In either case, the marginal cost ∂c
∂y

= λ̂, is a C1 function of

w and y, so the cost function is C2, which is hard to establish by other means.

Returning now to (7.9), note that since the Hessian is a symmetric matrix, we have a

number of reciprocity results. Namely:

∂x̂i
∂wj

=
∂x̂j
∂wi

i = 1, . . . , n and j = 1, . . . , n

and
∂x̂i
∂y

=
∂λ̂

∂wi
=

∂2c

∂wi∂y
.

7.3 The marginal cost function

Define the cost function c by

c(w, y) =
n∑
k=1

wkx̂k(w, y).

Then
∂c(w, y)

∂y
=

n∑
k=1

wk
∂x̂k(w, y)

∂y
,
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and
∂2c(w, y)

∂y2
=

n∑
k=1

wk
∂2x̂k(w, y)

∂y2
. (7.10)

From (7.1), we have wk = λ̂fk(x̂), so

∂c(w, y)

∂y
= λ̂

n∑
k=1

fk(x̂)
∂x̂k(w, y)

∂y
= λ̂, (7.11)

where the second equality is just (7.7).

That is, the Lagrange multiplier λ̂ is the marginal cost.

Now let’s see whether the marginal cost is increasing or decreasing as a function of y. Dif-

ferentiating (7.7) with respect to y yields

n∑
j=1

(
∂x̂j
∂y

n∑
i=1

fij(x̂)
∂x̂i
∂y

+ fj(x̂)
∂2x̂j
∂y2

)
= 0,

or rearranging,
n∑
j=1

fj(x̂)
∂2x̂j
∂y2

= −
n∑
i=1

n∑
j=1

fij(x̂)
∂x̂i
∂y

∂x̂j
∂y

. (7.12)

From (7.10) and (7.1) we have that the left-hand side of (7.12) is
1

λ̂

∂2c

∂y2
. What is the

right-hand side?

Fix w and consider the curve y 7→ x̂(y). This is called an expansion path. It traces

out the optimal input combination as a function of the level of output. The tangent line to

this curve at x̂ is just {x̂+ αv : α ∈ R}, where

vi =
∂x̂i
∂y

.

Write the output along this tangent line, f(x̂ + αv), as a function f̂ of α. That is, f̂(α) =

f(x̂+ αv). By the chain rule,

f̂ ′(α) =
n∑
j=1

fj(x̂+ αv)vj,

and

f̂ ′′(α) =
n∑
i=1

n∑
j=1

fij(x̂+ αv)vivj,
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so

f̂ ′′(0) =
n∑
i=1

n∑
j=1

fij(x̂)
∂x̂i
∂y

∂x̂j
∂y

.

Thus (7.12) can be written as
∂2c

∂y2
= −λ̂f̂ ′′(0).

In other words (7.12) asserts that the slope of the marginal cost curve is increasing (that is,

the cost function is a locally convex function of y) when the production function is locally

concave on the line tangent to the expansion path, and vice-versa.

7.4 Average cost and elasticity of scale

Recall that a production function f exhibits constant returns to scale if f(αx) = αf(x)

for all α > 0. It exhibits increasing returns to scale if f(αx) > αf(x) for α > 1, and

decreasing returns to scale if f(αx) < αf(x) for α > 1. If f is homogeneous of degree

k, that is, if

f(αx) = αkf(x),

then the returns to scale are decreasing, constant, or increasing, as k < 1, k = 1, or k > 1.

Define

h(α, x) = f(αx).

The elasticity of scale e(x) of the production function at x is defined to be

D1h(1, x)
1

f(x)
= f ′(x) · x/f(x),

where D1 denotes the partial derivative with respect to the first argument α:

df(αx)

dα

α

f(x)

∣∣∣∣
α=1

.

If f is homogeneous of degree k, then e(x) = k, as

D1h(α, x) = kαk−1f(x).

Even if f is not homogeneous, following Varian, we can express the elasticity of scale in

terms of the marginal and average cost functions, at least for points x that minimize cost
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uniquely for some (y, w):

e
(
x̂(y, w)

)
= f ′(x̂) · x̂/f(x̂)

= f ′(x̂) · x̂/y as y = f
(
x̂(y, w)

)
=
w

λ̂
· x̂/y by the first order condition w = λ̂f ′(x̂)

=
c(y, w)/y

Dyc(y, w)
as c(y, w) = w · x̂(y, w), and by (7.11) λ̂ = Dyc(y, w)

= AC(y)/MC(y).

Holding w fixed, and writing the cost simply as a function of y,

d

dy
AC(y) =

d

dy

c(y)

y
=
c′(y)y − c(y)

y2
=

1

y

(
c′(y)− c(y)

y

)
=

1

y
(MC(y)− AC(y)) .

Thus

AC′(y) > 0⇔ MC(y) > AC(y)⇔ e(x̂) < 1.

7.5 Average cost and constant returns to scale

If f exhibits constant returns to scale, then:

• the conditional input demand functions x̂(w, y) are homogenous of degree 1 in y.

• Marginal cost = average cost.

• For a price-taking profit maximizer, price = marginal cost = average cost, so profit is

zero.

• If price is less than marginal cost, then the optimal output is zero. If price is equal

to marginal cost, then every level of output maximizes profit, which is zero. If price

is greater than marginal cost, then the profit function is unbounded, so no profit

maximizer exists.
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7.6 Recovering the Production Function

from a Cost Function

We already know from the support function that the input requirement set for y is

{x : w · x ≥ c(w, y) for all w ∈ Rn
+}.

But there is often another way to get a nicer expression for the production function using

the envelope theorem.

Example 7.1. Consider the cost function (with two inputs)

c(w, y) = y(wσ1 + wσ2 )1/σ.

By the envelope theorem

∂c

∂wi
= y

1

σ
(wσ1 + wσ2 )

1−σ
σ σwσ−1i = x∗i ,

where x∗(w, y) is the cost minimizing input vector. We can eliminate w1 and w2 and solve

for y as a function of x1 and x2. Here’s the trick: exponentiate the above equality to the

ρ =
σ

σ − 1

power to get

yρ(wσ1 + wσ2 )−1wσi = xρi

and sum over i to get

xρ1 + xρ2 = yρ(wσ1 + wσ2 )−1(wσ1 + wσ2 ) = yρ,

which gives the production function

y = (xρ1 + xρ2)
1/ρ.

This called the constant elasticity of substitution production function, or the Arrow–

Chenery–Minhas–Solow production function.
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Example 7.2. Given the cost function

c(w, y) = y
n∑
i=1

αiwi

By the envelope theorem
∂c

∂wi
= αiy = x∗i ,

where x∗(w, y) is the cost minimizing input vector. This implies that the cost minimizing

point x∗ is independent of w! Thus

y =
x∗i
αi
, i = 1, . . . , n.

Using the support function approach to finding the input requirement set, we see that it is

{x : x = x∗}, so that the production function is

y = min
i

xi
αi
.

This sort of production function is a Leontief production function.
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Lecture 8

Production Functions, Cost Functions,

and Production Possibilities

8.1 A Simple Model of Production Possibilities

This is a very simple model of the production possibilities of an economy.

There are n outputs y1, . . . , yn and ` factors v1, . . . , v`. Each output is produced according

to the production function yj = f j(vj1, . . . , v
j
`). There is no joint production, there are no

intermediate goods, and there is only one production function for each output.

The supply of factors in the economy are fixed at levels ω1, . . . , ω`.

Assume that for each j, the production function satisfies

f j : Rl
+ → R is continuous, C2 on Rl

++, ∇f j � 0 on Rl
++,

and that the Hessian

D2f j is negative definite on the subspace orthogonal to ∇f j.

You will presently see why we make these assumptions. They guarantee that all the second

order conditions hold as strict inequalities.
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Production possibility frontier

The production possibility set (PPS) is

{
y ∈ Rn : 0 ≤ yj ≤ f j(vj), vj = 0, j = 1, . . . , n, and

n∑
j=1

vj 5 ω
}
,

where ω = (ω1, . . . , ω`) is the factor supply vector. Note that the PPS is compact, since the

f js are continuous and monotonic, so the PPS is the continuous image of the compact set

{
(v1, . . . , vn) ∈ R`n : vj = 0, j = 1, . . . , n, and

n∑
j=1

vj 5 ω
}
.

The production possibility frontier (PPF) is the outer boundary of the PPS.

The PPF solves a constrained maximization problem

The production possibility frontier can be characterized by the following maximization prob-

lem.

max
v1,...,vn

fn(vn) subject to

f j(vj) = ηj, j = 1, . . . , n− 1
n∑
j=1

vjk, = ωk k = 1, . . . , `

vjk = 0, j = 1, . . . , n

k = 1, . . . , `.

The Lagrangian is:

L(v, λ, µ; η, ω) =

fn(vn1 , . . . , v
n
` ) +

n−1∑
j=1

λj
(
f j(vj1, . . . , v

j
`)− ηj

)
+
∑̀
k=1

µk

(
ωk −

n∑
j=1

vjk

)
.

In order to apply the LMT we need to verify that the Lagrange Constraint Qualification

is satisfied. That is, we need to show that the gradients of the constraints are linearly

independent (at the optimum).
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Suppose λ1, . . . , λn−1, µ1, . . . , µ` are coefficients on the gradients that yield a linear com-

bination of the gradients that adds up to the zero vector. Then µ1 = . . . = µ` = 0. Thus

since each f jk > 0, we get λj = 0, for all j = 1, . . . , n− 1. That is, the gradients are linearly

independent.

Thus by the Lagrange multiplier theorem, there are Lagrange multipliers λ̂j, µ̂k, such

that the first order conditions are (assuming each v̂jk > 0) :

λ̂jf
j
k(v̂j)− µ̂k = 0

j=1,...,n

k = 1, . . . , `

where for symmetry we define λ̂n = 1. This implies

λ̂j =
fnk
f jk

for any input k = 1, . . . , `.

Let ŷn(η, ω) be the optimal value function. Its graph is the PPF. By the envelope

theorem, the slope of the PPF satisfies

∂ŷn
∂ηj

=
∂L

∂ηj
= −λ̂j = −f

n
k

f jk

for any j = 1, . . . , n− 1, k = 1, . . . , `. In other words, λj is the marginal opportunity cost of

a unit of yj in terms of yn.

Also note that
f jk
f jk′

=
µ̂k
µ̂k′

,

which is independent of j. That is, in every industry the slopes of the isoquants are the

same.

Second order conditions

While we’re at it, let’s check the second order conditions. The Hessian of the Lagrangian is

the block diagonal `n× `n matrix

Let x = (x1, . . . , xn) belong to Rln. The second order condition is that the quadratic form

x′Hx is negative semidefinite on the subspace orthogonal to the gradients of the constraints.
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It is straightforward to see that this means

n∑
j=1

[∑̀
i=1

∑̀
k=1

λjf
j
ikx

j
ix
j
k

]
≤ 0

for all nonzero x satisfying

∇f j · xj =
∑̀
k=1

f jkx
j
k = 0, j = 1, . . . , n− 1,

and
n∑
j=1

xjk = 0 k = 1, . . . , `.

What about the case j = n? If we can show that ∇fn · xn = 0, then by our assumption

on the gradients of the f js, each λj > 0, so by the assumption on the Hessian of the f js,

each bracketed term is nonpositive, and at least one is strictly negative (since at least one

xj 6= 0).

To see that ∇fn · xn = 0, observe that for each k, xjk = −∑n
j=1 x

j
k. Thus

∇fn · xn =
∑̀
k=1

fnk x
n
k

= −
∑̀
k=1

fnk

n−1∑
j=1

xjk

= −
n−1∑
j=1

[∑̀
k=1

λjf
j
kx

j
k

]
= 0.

The penultimate equality follows from the first order condition that λjf
j
k = µk = fnk for all

i.

Relation to cost minimization

Assume that each producer faces the same wages w = (w1, . . . , w`) for the factors and

minimizes costs. To ease notation in this section, I shall suppress the superscripts denoting

the particular output.
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The cost minimization problem is to

min w · v subject to f(v) ≥ y.

Form the Lagrangean

L(v, γ;w, y) = w · v − γ
(
f(v)− y

)
.

The value function is the cost function c(w, y). By the envelope theorem, the marginal cost

is

MC =
∂c

∂y
=
∂L

∂y
= γ.

We also have the first order conditions (check the gradient of the constraint) :

wk − γfk = 0, k = 1, . . . , `

assuming each vk > 0. (Note that these implies γ > 0.) In other words,

fk =
wk
MC

Now back to the PPF. If all firms face the same wages and minimize costs, then

∂ŷn
∂ηj

= −λ̂j = −f
n
k

f jk
= −

wk
MCn
wk
MC j

= −MCj
MCn

.

That is, the marginal opportunity cost of one unit of yj expressed in terms of yn is exactly

the ratio of the marginal cost of a unit of yj (calculated in terms of wages) relative to the

marginal cost of a unit of yn. What this tells us is that marginal costs (derived from wages)

indicate real opportunity costs.

8.2 The Averch–Johnson Effect

Averch and Johnson pointed out that a firm subject to rate of return regulation has an

incentive not to minimize costs. Thus the apparent cost function for these firms does not

yield the true production function. Rate of return regulation is baesed on a couple of Supreme

Court rulings:

• Munn v. Illinois

• Hope case

74



Theory of Value: EC 121a Fall 2021

Maximize π(K) subject to π ≤ rK. If the constraint binds the picture looks like figure 8.1.

The regulated firm overuses capital in order to get a higher rate base.

Figure 8.1

8.3 Quasiconcave functions

There are weaker notions of convexity that are commonly applied in economic theory.

Definition 8.1. A function f : C → R on a convex subset C of a vector space is:

• quasiconcave if for all x, y in C with x 6= y and all 0 < λ < 1

f
(
λx+ (1− λ)y

)
≥ min{f(x), f(y)}.

• strictly quasiconcave if for all x, y in C with x 6= y and all 0 < λ < 1

f
(
λx+ (1− λ)y

)
> min{f(x), f(y)}.

• explicitly quasiconcave or semistrictly quasiconcave if it is quasiconcave and in

addition, for all x, y in C with x 6= y and all 0 < λ < 1

f(x) > f(y)⇒ f
(
λx+ (1− λ)y

)
> min{f(x), f(y)} = f(y).

• quasiconvex if for all x, y in C with x 6= y and all 0 < λ < 1

f
(
λx+ (1− λ)y

)
≤ max{f(x), f(y)}.
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• strictly quasiconvex if for all x, y in C with x 6= y and all 0 < λ < 1

f
(
λx+ (1− λ)y

)
< max{f(x), f(y)}.

• explicitly quasiconvex or semistrictly quasiconvex if it is quasiconvex and in

addition, for all x, y in C with x 6= y and all 0 < λ < 1

f(x) < f(y)⇒ f
(
λx+ (1− λ)y

)
< max{f(x), f(y)} = f(y).

There are other choices we could have made for the definition based on the next lemma.

Lemma 8.2. For a function f : C → R on a convex set, the following are equivalent:

1. The function f is quasiconcave.

2. For each α ∈ R, the strict upper contour set [f(x) > α] is convex, but possibly empty.

3. For each α ∈ R, the upper contour set [f(x) ≥ α] is convex, but possibly empty.

Proof. (1)⇒ (2) If f is quasiconcave and x, y in C satisfy f(x) > α and f(y) > α, then for

each 0 ≤ λ ≤ 1 we have

f
(
λx+ (1− λ)y

)
≥ min{f(x), f(y)} > α.

(2)⇒ (3) Note that

[f ≥ α] =
∞⋂
n=1

[f > α− 1
n
],

and recall that the intersection of convex sets is convex.

(3)⇒ (1) If [f ≥ α] is convex for each α ∈ R, then for y, z ∈ C put α = min{f(y), f(z)}
and note that f

(
λy + (1− λ)z

)
belongs to [f ≥ α] for each 0 ≤ λ ≤ 1.

Corollary 8.3. A concave function is quasiconcave. A convex function is quasiconvex.

Lemma 8.4. A strictly quasiconcave function is also explicitly quasiconcave. Likewise a

strictly quasiconvex function is also explicitly quasiconvex.

Of course, not every quasiconcave function is concave.
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Example 8.5 (Explicit quasiconcavity). This example sheds some light on the definition of

explicit quasiconcavity. Define f : R→ [0, 1] by

f(x) =

0 x = 0

1 x 6= 0.

If f(x) > f(y), then f
(
λx+ (1− λ)y

)
> f(y) for every λ ∈ (0, 1) (since f(x) > f(y) implies

y = 0). But f is not quasiconcave, as {x : f(x) ≥ 1} is not convex.

For a proof of the next fact see my notes for Ec 181.

Fact 8.6. Let C be a convex set in Rm. Let f be a lower semicontinuous quasiconcave

function on C that has no local maxima. Then f is explicitly quasiconcave.

Theorem 8.7 (Local maxima of explicitly quasiconcave functions). Let f : C → R be an

explicitly quasiconcave function (C convex). If x∗ is a local maximizer of f , then it is a

global maximizer of f over C.

Proof. Let x belong to C and suppose f(x) > f(x∗). Then by the definition of explicit

quasiconcavity, for any 1 > λ > 0, f
(
λx + (1 − λ)x∗

)
> f(x∗). Since λx + (1 − λ)x∗ → x∗

as λ→ 0 this contradicts the fact that f has a local maximum at x∗.

8.4 Quasiconcavity and Differentiability

Quasiconcavity has implications for derivatives.

Proposition 8.8. Let C ⊂ Rn be convex and let f : C → R be quasi-concave. Let y belong

to C and assume that f has a one-sided directional derivative

f ′(x; y − x) = lim
λ↓0

f
(
x+ λ(y − x)

)
− f(x)

λ
.

Then

f(y) ≥ f(x) ⇒ f ′(x; y − x) ≥ 0.

In particular, if f is differentiable at x, then f ′(x) · (y − x) ≥ 0 whenever f(y) ≥ f(x).

Proof. If f(y) ≥ f(x), then f
(
x + λ(y − x)

)
= f

(
(1 − λ)x + λy

)
≥ f(x) for 0 < λ ≤ 1 by

quasiconcavity. Rearranging implies
f
(
x+λ(y−x)

)
−f(x)

λ
≥ 0 and taking limits gives the desired

result.
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Theorem 8.9. Let C ⊂ Rn be open and let f : C → R be quasiconcave and twice-

differentiable at x ∈ C. Then

n∑
i=1

n∑
j=1

Di,jf(x)vivj ≤ 0 for any v satisfying f ′(x) · v = 0.

Proof. Pick v ∈ R and define

g(λ) = f(x+ λv).

Then

g(0) = f(x), g′(0) = f ′(x) · v, g′′(0) =
n∑
i=1

n∑
j=1

Di,jf(x)vivj.

What we have to show is that if g′(0) = 0, then g′′(0) ≤ 0. Assume for the sake of contra-

diction that g′(0) = 0 and g′′(0) > 0. Then g has a strict local minimum at zero. That is,

for ε > 0 small enough, f(x+ εv) > f(x) and f(x− εv) > f(x). But by quasiconcavity,

f(x) = f
(
1
2
(x+ εv) + 1

2
(x− εv)

)
≥ min{f(x+ εv), f(x− εv)} > f(x),

a contradiction.
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Lecture 9

Quasiconcavity and Maximization

9.1 Maximization and Inequality Constraints

Theorem 9.1 (Karush–Kuhn–Tucker). Let f, g1, . . . , gm : Rn
+ → R be differentiable at x∗,

and let x∗ be a constrained local maximizer of f subject to g(x) = 0 and x = 0.

Let B = {i : gi(x
∗) = 0} denote the set of binding functional constraints, and let Z = {j :

xj = 0} denote the set of binding nonnegativity constraints on the variables. Assume that

x∗ satisfies the Kuhn–Tucker Constraint Qualification (see section 9.3 below). Then there

exists λ∗ ∈ Rm such that

f ′(x∗) +
m∑
i=1

λ∗i gi
′(x∗) 5 0,

x∗ ·
(
f ′(x∗) +

m∑
i=1

λ∗i gi
′(x∗)

)
= 0,

λ∗ = 0,

λ∗ · g(x∗) = 0.

9.2 Karush–Kuhn–Tucker Theorem for Minimization

Theorem 9.2 (Karush–Kuhn–Tucker). Let f, g1, . . . , gm : Rn
+ → R be differentiable at x∗,

and let x∗ be a constrained local minimizer of f subject to g(x) = 0 and x = 0.

Let B = {i : gi(x
∗) = 0}, and let Z = {j : x∗j = 0},. Assume that x∗ satisfies the
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Kuhn–Tucker Constraint Qualification. Then there exists λ∗ ∈ Rm such that

f ′(x∗)−
m∑
i=1

λ∗i gi
′(x∗) = 0,

x∗ ·
(
f ′(x∗)−

m∑
i=1

λ∗i gi
′(x∗)

)
= 0,

λ∗ = 0,

λ∗ · g(x∗) = 0.

Proof. Minimizing f is the same as maximizing −f . The Kuhn–Tucker conditions for this

imply that there exists λ∗ ∈ Rm
+ such that

−f ′(x∗) +
m∑
i=1

λ∗i gi
′(x∗) 5 0,

and the conclusion follows by multiplying this by −1.

9.3 Constraint Qualifications

Definition 9.3. Let f, g1, . . . , gm : Rn
+ → R. Let

C = {x ∈ Rn : x = 0, gi(x) ≥ 0, i = 1, . . . ,m}.

denote the constraint set. Consider a point x∗ ∈ C and let

B = {i : gi(x
∗) = 0} and Z = {j : x∗j = 0},

index the set of binding functional constraints and the set of binding nonnegativity con-

straints at x∗. The point x∗ satisfies the Kuhn–Tucker Constraint Qualification if

f, g1, . . . , gm are differentiable at x∗, and for every v ∈ Rn satisfying

vj = v · ej ≥ 0 j ∈ Z,
v · gi′(x∗) ≥ 0 i ∈ B,
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there is a continuous curve ξ : [0, ε)→ Rn satisfying

ξ(0) = x∗,

ξ(t) ∈ C for all t ∈ [0, ε),

Dξ(0) = v,

where Dξ(0) is the one-sided directional derivative at 0.

This condition is actually a little weaker than Kuhn and Tucker’s condition. They as-

sumed that the functions f, g1, . . . , gm were differentiable everywhere and required ξ to be

differentiable everywhere. You can see that it may be difficult to verify it in practice.

To better understand the hypotheses of the theorem, let’s look at a classic example of its

failure.

Example 9.4 (Failure of the Kuhn–Tucker Constraint Qualification). Let f : R2 → R via

f(x, y) = x and g : R2 → R via g(x, y) = (1 − x)3 − y. The curve g = 0 is shown in figure

9.1, and the constraint set in figure 9.2.

Clearly (x∗, y∗) = (1, 0) maximizes f subject to (x, y) = 0 and g ≥ 0. At this point we

have g′(1, 0) = (0,−1) and f ′ = (1, 0). Note that no λ (nonnegative or not) satisfies

(1, 0) + λ(0,−1) 5 (0, 0).

Fortunately for the theorem, the Constraint Qualification fails at (1, 0). To see this, note

that the constraint g ≥ 0 binds, that is g(1, 0) = 0 and the second coordinate of (x∗, y∗) is

zero. Suppose v = (vx, vy) satisfies

v · g′(1, 0) = v · (0,−1) = −vy ≥ 0 and v · e2 = vy ≥ 0,

that is, vy = 0. For instance, take v = (1, 0). The constraint qualification requires that there

is a path starting at (1, 0) in the direction (1, 0) that stays in the constraint set. Clearly no

such path exists, so the constraint qualification fails.

The next result, which may be found in Arrow, Hurwicz, and Uzawa, provides a tractable

sufficient condition for the KTCQ.

Theorem 9.5 (Constraint Qualifications). In theorem 9.1, the KTCQ may be replaced by

any of the conditions below.
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Figure 9.1: The function g(x, y) = (1− x)3 − y.

Figure 9.2: This constraint set violates the Constraint Qualification.
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1. Each gi is convex. (This includes the case where each is linear.)

2. Each gi is concave and there exists some x̂� 0 for which each gi(x̂) > 0.

3. The set {ej : j ∈ Z} ∪ {gi′(x∗) : i ∈ B} is linearly independent.

9.4 Cost Function for Linear Production Function

With this constant returns to scale production function, all inputs are perfect substitutes

for each other (provided units are chosen properly).

y = α1x1 + . . .+ αnxn

where each αi > 0, i = 1, . . . , n.

The Lagrangian for the cost minimization problem is

n∑
i=1

wixi − λ
(

n∑
i=1

αixi − y
)

and the näıve first order conditions are

∂L

∂xi
= wi − λαi = 0 i = 1, . . . , n,

which taken at face value imply
w1

α1

= · · · =
wn
αn

, which is unlikely since these are all

exogenous. This is a red flag that signals that the nonnegativity constraints are binding and

that you need to examine the Kuhn–Tucker first order conditions. They are

wi − λαi ≥ 0 i = 1, . . . , n,

and

xi > 0⇒ wi − λαi = 0 and wi − λαi > 0⇒ xi = 0.

In addition, λ ≥ 0 and λ (
∑n

i=1 αixi − y) = 0.

Thus
wi
αi
≥ λ i = 1, . . . , n.

The question is, can we have strict inequality for each i? The answer is no, as that would
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imply xi = 0 for each i and the output would be zero, not y > 0. So the solution must satisfy

λ̂ = min
i

wi
αi
.

Let i∗ satisfy λ̂ = wi∗
αi∗

. That is, i∗ is a factor that maximizes “bang per buck.” Then the

conditional factor demand given by:

x̂i =


y

αi
, i = i∗

0, i 6= i∗

minimizes cost, and the cost function is

c(y, w) = y ·min

{
w1

α1

, · · · , wn
αn

}
.

This is the cost function even if i∗ is not unique, but when there is more than one such i∗,

the conditional factor demand is no longer a unique input vector, but rather a set of cost

minimizing input vectors. In fact, the set of cost minimizing input vectors is the convex set:

co

{
y

αi
ei :

wi
αi

= λ̂ = min
j

wj
αj

}
.

Note that even though the production function is very smooth, the cost function fails to be

differentiable (for n ≥ 2). This is to be expected since the bordered Hessian of the production

function is given by 

f11 . . . f1n f1
...

...
...

...
...

...

fn1 . . . fnn fn

f1 . . . fn 0


=



0 . . . 0 α1

...
...

...
...

...
...

0 . . . 0 αn

α1 . . . αn 0


,

which is singular for n ≥ 2. (It has rank 2.)
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9.5 Saddle point Theorem

Definition 9.6. Let φ : X × Y → R. A point (x∗, y∗) in X × Y is a saddle point of φ

(over X × Y ) if it satisfies

φ(x, y∗) ≤ φ(x∗, y∗) ≤ φ(x∗, y) for all x ∈ X, y ∈ Y.

Definition 9.7. Given f, g1, . . . , gm : C → R, the associated Lagrangian L : C ×Λ→ R is

defined by

L(x, λ) = f(x) +
m∑
j=1

λjgj(x) = f(x) + λ · g(x),

where Λ is an appropriate subset of Rm. (Usually Λ = Rm or Rm
+ .) The components of λ

are called Lagrange multipliers.

Theorem 9.8. Let C ⊂ Rn be convex, and let f, g1, . . . , gm : C → R be concave. Assume in

addition that Slater’s Condition,

∃x̄ ∈ C g(x̄)� 0, (S)

is satisfied. Then x∗ maximizes f subject to the constraints gj(x) ≥ 0, j = 1, . . . ,m if and

only if

there exist real numbers λ∗1, . . . , λ
∗
m ≥ 0 such that x∗, λ∗1, . . . , λ

∗
m is a saddle point of the

Lagrangian for x ∈ C, λ = 0. That is,

L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ) x ∈ C, λ = 0, (9.1)

where L(x, λ) = f(x) + λ · g(x).

Furthermore, in this case
m∑
j=1

λ∗jgj(x
∗) = 0. (9.2)

In other words, for a concave programming problem, the optimal x∗ maximizes the

Lagrangian L(·, λ∗). The role of the Lagrange multipliers is to provide conversion

factors or prices to convert a constrained maximization problem to an unconstrained

maximization problem.

The next example shows what can go wrong when Slater’s Condition fails.
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Example 9.9. In this example, due to Slater, C = R, f(x) = x, and g(x) = −(1 − x)2.

Note that Slater’s Condition fails because g ≤ 0. The constraint set [g ≥ 0] contains only 1.

Therefore f attains a constrained maximum at 1. There is however no saddle point at all of

the Lagrangian

L(x, λ) = x− λ(1− x)2 = −λ+ (1 + 2λ)x− λx2.

To see this, observe the first order condition for a maximum in x is ∂L
∂x

= 0, or 1+2λ−2λx = 0,

which implies x > 1 since λ ≥ 0. But for x > 1, ∂L
∂λ

= −(1 − x)2 < 0, so no minimum with

respect to λ exists.

9.5.1 The role of Slater’s Condition

In this section we present a geometric argument that illuminates the role of Slater’s Condition

in the saddle point theorem. Let us consider the argument underlying its proof. In the

framework of theorem 9.8, define the function h : C → Rm+1 by

h(x) =
(
g1(x), . . . , gm(x), f(x)− f(x∗)

)
and set

H = {h(x) : x ∈ C} and Ĥ = {y ∈ Rm+1 : ∃x ∈ C y 5 h(x)
}
.

Then Ĥ is a convex set bounded in part by H. Figure 9.3 depicts the sets H and Ĥ for

Slater’s example 9.9, where f(x)−f(x∗) is plotted on the vertical axis and g(x) is plotted on

the horizontal axis. Now if x∗ maximizes f over the convex set C subject to the constraints

gj(x) ≥ 0, j = 1, . . . ,m, then h(x∗) has the largest vertical coordinate among all the points

in H whose horizontal coordinates are nonnegative.

The semipositive m + 1-vector λ̂∗ = (λ∗1, . . . , λ
∗
m, µ

∗) from theorem 9.8 is obtained by

separating the convex set Ĥ and Rm+1
++ . It has the property that

λ̂∗ · h(x) ≤ λ̂∗h(x∗)

for all x ∈ C. That is, the vector λ̂∗ defines a hyperplane through h(x∗) such that the entire

set Ĥ lies in one half-space. It is clear in the case of Slater’s example that the hyperplane is

a vertical line, since it must be tangent to H at h(x∗) = (0, 0). The fact that the hyperplane

is vertical means that µ∗ (the multiplier on f) must be zero.

If there is a non-vertical hyperplane through h(x∗), then µ∗ is nonzero, so we can divide

by it and obtain a full saddle point of the true Lagrangian. This is where Slater’s condition
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(a) (b)

Figure 9.3: The sets H and Ĥ for Slater’s example.

comes in.

In the one dimensional, one constraint case, Slater’s Condition reduces to the existence

of x̄ satisfying g(x̄) > 0. This rules out having a vertical supporting line through x∗. To see

this, note that the vertical component of h(x∗) is f(x∗)− f(x∗) = 0. If g(x∗) = 0, then the

vertical line through h(x∗) is simply the vertical axis, which cannot be, since h(x̄) lies to the

right of the axis. If g(x∗) > 0, then Ĥ includes every point below h(x∗), so the only line

separating Ĥ and R2
++ is horizontal, not vertical. See figure 9.4. In Figure 9.4, the shaded

Figure 9.4: Slater’s condition guarantees a non-vertical supporting line.

area is included in Ĥ. For instance, let C = (−∞, 0], f(x) = x, and g(x) = x+ 1. Then the
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set Ĥ is just {y ∈ R2 : y 5 (0, 1)}.
If f and the gjs are linear, then Slater’s Condition is not needed to guarantee a non-

vertical supporting line. Intuitively, the reason for this is that for the linear case, the set Ĥ

is polyhedral, so even if g(x∗) = 0, there is still a non-vertical line separating Ĥ and Rm
++.

The proof of this fact relies on results about linear inequalities. It is subtle because Slater’s

condition rules out a vertical supporting line. In the linear case, there may be a vertical

supporting line, but if there is, there is also a non-vertical supporting line that yields a

Lagrangian saddle point. As a case in point, consider C = (−∞, 0], f(x) = x, and g(x) = x.

Then the set Ĥ is just {y ∈ R2 : y 5 0}, which is separated from R2
++ by every semipositive

vector.

9.6 Lagrange Multipliers and Decentralization

Recall that the production possibility set (PPS) is

{
y ∈ Rn : 0 ≤ yj ≤ f j(vj), vj = 0, j = 1, . . . , n, and

n∑
j=1

vj 5 ω
}
.

Note that the PPS is compact, since the f js are assumed to be continuous and monotonic,

so the PPS is the continuous image of the compact set

{
(v1, . . . , vn) ∈ Rln : vj = 0, j = 1, . . . , n, and

n∑
j=1

vj 5 ω
}
.

The production possibility frontier (PPF) is the outer boundary of the PPS. That is, y

belongs to the PPF if y belongs to the PPS and there is no y′ in the PPS distinct from y

with y′ = y. Such a y is also called technically efficient. It is easy to verify that if each f j

is concave, then the PPS is convex. Therefore every point on the PPF is a support point.

That is, if y belongs to the PPF, then there is a vector p of strictly positive prices such that

y maximizes p over the PPS. This follows from the separating hyperplane theorem applied

to the PPS and {z : z � y}. In this case the PPF can be parameterized by p.
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Maximizing the value of output:

max
v1,...,vn

n∑
j=1

pjf
j(vj) subject to

n∑
j=1

vjk ≤ ωk k = 1, . . . , `

vjk ≥ 0 j = 1, . . . , n

k = 1, . . . , `.

The Lagrangian is:

L(v, µ) =
n∑
j=1

pjf
j(vj) +

∑̀
k=1

µk

(
ωk −

j∑
j=1

vjk

)
.

Note that as long as each ωk > 0, then Slater’s Condition is satisfied. So a point v∗ solves

the maximization problem if and only if the there are λ∗ and µ∗ such that (v∗;λ∗, µ∗) is a

saddle point of the Lagrangian.

Let’s examine a simplified version with n = 2 and ` = 2, and let’s further name the

inputs labor, L, and capital, K, available in fixed quantities L̄ and K̄, and let us also use w

and r for the Lagrange multipliers instead of µ. (The same argument works in the general

case—there is just more notation.) The saddle point condition is

p1f
1(L1, K1) + p2f

2(L2, K2) + w∗(L̄− L1 − L2) + r∗(K̄ −K1 −K2)

≤ p1f
1(L∗1, K

∗
1) + p2f

2(L∗2, K
∗
2) + w∗(L̄− L∗1 − L∗2) + r∗(K̄ −K∗1 −K∗2) (9.3)

p1f
1(L∗1, K

∗
1) + p2f

2(L∗2, K
∗
2) + w∗(L̄− L∗1 − L∗2) + r∗(K̄ −K∗1 −K∗2)

≤ p1f
1(L∗1, K

∗
1) + p2f

2(L∗2, K
∗
2) + w(L̄− L∗1 − L∗2) + r(K̄ −K∗1 −K∗2) (9.4)

where (9.3) holds for all (L1, L2, K1, K2) = 0 and (9.4) holds for all (λ,w, r) = 0. Evaluating

(9.3) at L1 = L∗1 and K1 = K∗1 , and canceling common terms yields

p2f
2(L2, K2)− w∗L2 − r∗K2 ≤ p2f

2(L∗2, K
∗
2)− w∗L∗2 − r∗K∗2

This says that (L∗2, K
∗
2) maximizes profit at price p2 and wages w∗ and rental rate r∗.
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Similarly, evaluating (9.3) at L2 = L∗2 and K2 = K∗2 , and canceling common terms yields

p1f
1(L1, K1)− w∗ − L1 − r∗K1 ≤ p1f

1(L∗1, K
∗
1)− w∗L∗1 − r∗K∗1

which says that (L∗1, K
∗
1) maximizes profit at price p1 and wages w∗ and rental rate r∗.

In other words,

the Lagrange multipliers on the resource constraints are prices that decentralize the

problem of maximizing the value of output.

But the saddle point theorem also tells us we can go backwards! That is, if we maximize

profits given wages and the resource markets clear, then profit maximization leads to maxi-

mization of output value.

That is, suppose (L∗i , K
∗
i ) maximizes pif

i(L,K)−wL−rK, for i = 1, 2, and assume that

K∗1 +K∗2 = K̄ and L∗1 + L∗2 = L̄. Then we have

p1f
1(L1, K1)− wL1 − rK1 + p2f

2(L2, K2)− wL2 − rK2

≤ p1f
1(L∗1, K

∗
1)− wL∗1 − rK∗1 + p2f

2(L∗2, K
∗
2)− wL∗2 − rK∗2

for all L1, K1, L2, K2. Add wL̄+ rK̄ to both sides and rearrange to get

p1f
1(L1, K1) + p2f

2(L2, K2) + w(L̄− L1 − L2) + r(K̄ −K1 −K2)

≤ p1f
1(L∗1, K

∗
1) + p2f

2(L∗2, K
∗
2) + w(L̄− L∗1 − L∗2) + r(K̄ −K∗1 −K∗2)

for all L1, K1, L2, K2. This is the first saddle point inequality. The second saddle point

inequality is

p1f
1(L∗1, K

∗
1) + p2f

2(L∗2, K
∗
2) + w(L̄− L∗1 − L∗2) + r(K̄ −K∗1 −K∗2)

≤ p1f
1(L∗1, K

∗
1) + p2f

2(L∗2, K
∗
2) + w′(L̄− L∗1 − L∗2) + r′(K̄ −K∗1 −K∗2)

for all (w′, r′) = (0, 0), which is true since the resource constraints are assumed to bind.
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Lecture 10

Introduction to Capital Theory

10.1 Present discounted value

Comparing income streams

If you can invest one dollar at an annual rate of interest r, then in one year you will have

1 + r dollars. If that 1 + r is reinvested for another year it will be worth (1 + r)2 dollars in

two years. In general, after t years of reinvestment, it will be worth (1 + r)n dollars.

Equivalently, to get one dollar in t years, you need to invest 1/(1 + r)t dollars today and

reinvest the proceeds annually. In this sense, 1/(1 + r)t dollars today is worth 1 dollar in t

years, and is called the present discounted value of $1 at date t.

Moreover present value is linear: In order to have xt dollars at each date t, t = 1, . . . , n,

you need to invest
n∑
t=1

xt
(1 + r)t

today (t = 0). This is the present discounted value of the income stream x1, . . . , xn. If the

sequence xt is bounded (or does not grow too fast), then we can compute the present value

of the stream x1, x2, . . . as a convergent infinite series.

The present value of an income stream x is what you should be willing to pay today to re-

ceive that income stream. In fact, if two income streams x = (x1, x2, . . .) and y = (y1, y2, . . .)

have the same present value, then you can convert y into x via a series of borrowing and

investing transactions, where you can borrow and invest at the same rate r. (If there are

no financial intermediaries, borrowers pay investors, so the rate on investing and borrowing

must be equal.) Equivalently, the present value of x is the stock of cash you have to have

today in order to receive the income stream x.
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Compounding periods

Interest is often compounded more frequently than annually. If interest is compounded n

times annually, the annual interest rate is divided by n and credited at the end of each 1/n-th

year, so the value in t years is (1 + r
n
)nt. Now

lim
n→∞

(
1 +

r

n

)nt
= ert,

so with continuous compounding the present discounted values of a dollar at time t

is just e−rt today.

Continuous income flows

Sometimes economists prefer to work with continuous time instead of discrete periods. In

this case, we need to distinguish between stocks and flows. The simplest analogy is that of

filling a swimming pool with with a garden hose. Water flows from the hose at variable rate

and creates a stock of water in the pool. Flows are measured in gallons per minute (or other

appropriate units such as liters per second) and over the course of an interval of time the

integrated flow becomes a stock, which is measured in gallons (or liters). In the swimming

pool case, the stock cannot change instantaneously, they must change as the result of inflows

or outflows over an interval of time. But in economics and finance sometimes the stock of

capital can change discontinuously by borrowing or lending part of the stock.

We shall measure time so that “now” is t = 0. Consider now a “flow” of income f(t)

at time t measured in dollars per second (or euros per second), for t ≥ 0. The present

discounted value of the flow f is the stock of cash∫ ∞
0

f(t)e−rt dt.

The stock of cash is in units of dollars (or euros).

See the Appendix for a generalization of this to time-varying interest rates.

10.2 A typical investment problem

The following notes are based on the wonderful book Income, Wealth, and the Maximum

Principle by Martin L. Weitzman and the paper by Robert Dorfman. A small firm has a

capital stock (measured in dollars) that it uses to produce a flow of income. Let f(K)
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denote the flow rate of gross income that the firm produces using a capital stock of size

K, and assume that f is twice continuously differentiable, strictly concave, and strictly

increasing with f ′ > 0 and f ′′ < 0.

We assume that capital depreciates at the constant rate δ ≥ 0. That is, the outflow rate

of capital δK. The firm can increase its capital stock by saving a flow of I of the income as

a net investment in the capital stock.

The firm can borrow and lend at the market interest rate r > 0, so what it cares about

is the present discounted value of its net income. What the firm must choose is a time path,

or trajectory of its control variable I (net investment) over the time horizon [0,∞). (In

what follows I shall use bold letters to denote trajectories.) The control influences the state

variable K through the differential “equation of motion”

K̇(t) = I(t).

(Here I use the traditional dot notation to indicate derivatives with respect to time.) For

simplicity assume that there is a maximal rate Ī of investment, and note that with no gross

investment the net investment rate is I(t) = −δK(t) due to depreciation. Then the firm

faces constraints given by the initial condition

K(0) = K0,

a nonnegativity constraint K(t) ≥ 0 for all t, and

−δK(t) ≤ I(t) ≤ Ī .

Its goal is to maximize ∫ ∞
0

[
f
(
K(t)

)
− I(t)

]
e−rt dt.

You might think that solving this requires a manager who is very far-sighted and can balance

the trade-off between investing more now at the expense of current income to provide more

income in the future, but in fact

there is a trajectory p of “prices” that temporally decentralize this problem so

that each instant t the manager chooses the level of investment I(t) to maximize

a simple function of K, I, and p, called the Hamiltonian. The entire trade-off is

summarized at each point in time by the value p(t).
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10.3 A more general mathematical formulation

This is a special case of the following maximization problem,

max
I

∫ ∞
0

G
(
K(t), I(t)

)
e−rt dt

subject to the constraints (10.1)–(10.4).

K̇(t) = I(t). (10.1)

K(0) = K0. (10.2)

m
(
K(t)

)
≤ I(t) ≤M

(
K(t)

)
t ≥ 0, (10.3)

K(t) ≥ 0 t ≥ 0. (10.4)

Here m and M are known functions that of course satisfy m(K) ≤ M(K) for all K ≥ 0.1

We shall require that m be convex and decreasing and M be concave and increasing. For

many problems m is the zero function.

The function G is the instantaneous gain function, and r is the discount rate. The

arguments of G are the current levels of the state variable K, and the control variable

I.

Assumption 10.1. G is concave and continuously differentiable, and satisfies G(0, 0) = 0,

and D1G ≥ 0 and D2G < 0 everywhere.

Admissible controls

We restrict attention to control trajectories that are piecewise continuous. In other words,

I is required to have at most finitely many discontinuities in any finite time interval.

10.4 Steady states

A steady state is a pair (K, I) of trajectories satisfying

K(t) = K, I(t) = 0 ∀t ≥ 0.

1The general formulation of the Maximum Principle allows for additional constraints.
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We shall refer to a steady state by the level K of the capital stock it maintains. A steady

state may or may not exist, and if it exists, it may or may not be optimal. So fix K > 0 and

let

φ0 =

∫ ∞
0

G(K, 0)e−rt dt = G(K, 0)/r,

the present value of the steady state K. A standard technique from the calculus of variations

is to look at trajectory and consider a variation on it. The variation on I = 0 that I want

to consider is this. Invest at the rate ε/δ for a short time δ to increase the capital stock to

K + ε. Intuitively, this incurs an “instantaneous” cost on the order of D2G(K, 0)ε now, but

provides an increment in the present discounted value of the flow of D1G(K, 0)ε/r. Thus

it will pay to adjust the capital stock up or down by ε unless −D1G(K, 0)/D2G(K, 0) = r.

Weitzman defines the stationary return on capital by

R(K) = −D1G(K, 0)

D2G(K, 0)
.

So if a steady state K > 0 is optimal, then

R(K) = −D1G(K, 0)

D2G(K, 0)
= r (10.5)

must necessarily hold.

Related functions

We now define three functions related to the problem above. The first is the value function

V . It is the maximized value of the objective function as a function of the initial capital

stock. That is,

V (K) = max
I

∫ ∞
0

G
(
K(t), I(t)

)
e−rt dt

where the maximum is taken with respect to trajectories satisfying the constraints (10.1)–

(10.4) with K(0) = K. This of course assumes that a maximum exists for K(0) = K. Also, if

we want to index the problem by K, we really ought to index the optimal trajectories by K,

but we shall not. The thing to note about the value function is that it satisfies Bellman’s

Principle of Optimality, which states that if I∗, K∗ are optimal trajectories starting at
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K(0) = K0, then for any time t ≥ 0,

V (Ko) =

∫ t

0

G
(
K∗(s), I∗(s)

)
e−rs ds+ e−rtV

(
K∗(t)

)
. (10.6)

What this says is that when the capital stock reaches K∗(t) at time t, the optimal continu-

ation is the same as if we reset the clock to zero, and then followed the optimal trajectory

for K0 = K∗(t). This implies that if an optimal trajectory K∗ exists starting at K0, then an

optimal trajectory exists for every starting value K∗(t). In particular, V is defined for every

K∗(t). Since K∗ has a derivative (namely I), it is continuous, so its range is an interval.

Thus V must be defined on some interval (perhaps degenerate).

The next function we define is the Hamiltonian (more precisely, the current value

Hamiltonian) for the problem,

H(K, I, p) = G(K, I) + pI.

It is the sum of the gain function and a multiplier or costate variable p multiplying the

function that defines K̇. Why we do this will become apparent later. Closely related is the

maximized Hamiltonian H̃, defined by

H̃(K, p) = max
I:m(K)≤I≤M(K)

H(K, I, p).

It is the optimal value function for maximizing the Hamiltonian with respect to I.

Theorem

Assumptions

Here are the assumptions that Weitzman uses. They are satisfied for many economic prob-

lems. He notes that there are weaker assumptions under which the theorem remains true,

but they are less easy to understand and the proofs are less intuitive.

1. G is concave and continuously differentiable, G(0, 0) = 0, and D1G ≥ 0 and D2G < 0

everywhere.

2. The functions m and M are twice continuously differentiable, m is convex and nonin-

creasing, and M is concave and nondecreasing (so for K > 0, m′(K) ≤ 0, m′′(K) ≥ 0,

M ′(K) ≥ 0, M ′′(K) ≤ 0). In addition, for K ≥ 0, we assume m(K) ≤ 0 ≤M(K). To
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make sure that K never becomes negative, we also assume m(0) = 0. Even if we do

not allow capital to be consumed, it may still depreciate, in which case we generally

take m(K) = −δK.

3. An optimal trajectory exists for K0 = 0.

4. Accessibility Hypothesis: Define R(K) = −D1G(K, 0)/D2G(K, 0). If there exists

K̂ satisfying R(K̂) = r (that is, K̂ is a candidate for an optimal steady state), then

R′(K̂) < 0 (which implies K̂ is locally unique) and m(K̂) < 0 < M(K̂) (which implies

that K̂ is accessible from both sides). Note that this rules out m(K) = 0 for all K if

such a K̂ exists.

The (One-Dimensional) Maximum Principle

Under the assumptions above, the pair of trajectories (K∗, I∗) is optimal (within the class

of piecewise continuous trajectories) if and only if there exists a trajectory p∗ of the costate

variable such that for all t ≥ 0,

p∗(t) ≥ 0; (10.7)

at each time t, I(t) is chosen to

max
I
H
(
K(t), I, p(t)

)
subject to m

(
K(t)

)
≤ I ≤M

(
K(t)

)
,

that is,

H
(
K∗(t), I∗(t), p∗(t)

)
= H̃

(
K∗(t), p∗(t)

)
; (10.8)

the trajectory p∗ satisfies

ṗ∗(t) = −D1H̃
(
K∗(t), p∗(t)

)
+ rp∗(t); (10.9)

and the following transversality condition holds,

lim
t→∞

p∗(t)K∗(t)e−rt = 0. (10.10)

Moreover, the value function V is concave, continuously differentiable, nondecreasing, non-

negative, and its derivative is the costate variable. That is, for all t ≥ 0,

p∗(t) = V ′
(
K∗(t)

)
.
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Let me just say here that the proof proceeds by defining the wealth function

W (t) = V
(
K∗(t)

)
,

and using Bellman’s optimality principle

V (K(0)) =

∫ t

0

G
(
K∗(s), I∗(s)

)
e−rs ds+ e−rtV

(
K∗(t)

)
.

to write

W (t) = ert
[
W (0)−

∫ t

0

G
(
K∗(s), I∗(s)

)
e−rs ds

]
,

which proves that W is differentiable. Since V is concave (this is easy to show), the chain

rule for left- and right-hand derivatives implies that V is differentiable and

V ′
(
K∗(t)

)
=
Ẇ (t)

I∗(t)
,

provided I∗(t) 6= 0. (The case I∗(t) = 0 requires a bit more work.) This now allows us to

define p∗(t) to be V ′
(
K∗(t)

)
, and the remaining properties follow by more or less standard

methods. Since a differentiable concave function is continuously differentiable, we conclude

that p∗(t) is continuous.

Commentary

On p∗ and the Hamiltonian

According to the theorem, the costate variable p∗ is the derivative of the value function,

that is, it is the marginal value of a unit of capital to the firm, or the shadow price of

investment. It is precisely the value of investment. The Hamiltonian is the sum

G(K, I) + pI,

the sum of the net income plus the value of investment. The fact that this is maximized at

each point in time says that the firm should choose its investment to maximize the sum of

its dividends G plus retained earnings p∗I, where the retained capital I is valued at its true

marginal value p∗ = V ′(K∗).
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On ṗ∗

By the Envelope Theorem, if I∗(t) is an interior maximizer of the Hamiltonian, the deriva-

tive of the maximized Hamiltonian with respect to K or p is the partial derivative of the

Hamiltonian. That is,

D1H̃
(
K∗(t), p∗(t)

)
= D1H

(
K∗(t), I∗(t), p∗(t)

)
= D1G

(
K∗(t), I∗(t)

)
and

D2H̃
(
K∗(t), p∗(t)

)
= D3H

(
K∗(t), I∗(t), p∗(t)

)
= I∗(t).

In this case, (10.9) can be rewritten as

ṗ∗(t) = −D1G
(
K∗(t), I∗(t)

)
+ rp∗(t). (10.11)

This can be interpreted as a no-arbitrage condition. At time t I can buy ∆ units of

capital at a price p(t) and use it earn an incremental flow of income at the rate D1G ·∆ for

a length of time ε, and then resell it time t+ ε at a price p(t+ ε). The gain from this is

∆
[
p(t+ ε)− p(t) + εD1G

]
.

Or I could take p(t)∆ and lend it at the interest rate r for a period of length ε and earn

p(t)∆εr. Absence of arbitrage implies that these two strategies must have the same return,

or

p(t+ ε)− p(t) + εD1G = p(t)εr.

Dividing by ε and taking the limit as ε→ 0 implies (10.11).

Stationary optima

A stationary optimum need not exist, but suppose K̂ > 0 is a stationary optimum. That

is, if K0 = K̂, then K∗(t) = K̂ for all t ≥ 0. Then I∗(t) = 0 for all t. If this is an interior

maximizer of the Hamiltonian, then the first order condition implies

D2G(K̂, 0) + p∗(t) = 0,
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so that p∗ must also be constant. Then (10.9) and (10.11) imply

−D1G
(
K∗(t), I∗(t)

)
+ rp∗(t) = 0,

or in terms of the stationary return on capital function R,

R(K̂) = r.

The transversality condition

To see the necessity of the transversality condition, first use the Principle of Optimality

(10.6) to get

e−rtV
(
K∗(t)

)
= V (K0)−

∫ t

0

G
(
K∗(s), I∗(s)

)
e−rs ds

=

∫ ∞
t

G
(
K∗(s), I∗(s)

)
e−rs ds

Since the integral is convergent, we have

lim
t→∞

e−rtV
(
K∗(t)

)
= lim

t→∞

∫ ∞
t

G
(
K∗(s), I∗(s)

)
e−rs ds = 0. (10.12)

Now we use the concavity of V . Since concave functions lie below their tangent lines (The-

orem 5.5)

V (0) ≤ V (K) + V ′(K)(0−K)

for all K. In particular, for K = K∗(t), using the fact that p∗(t) = V ′
(
K∗(t)

)
, we can

rearrange this to get

V
(
K∗(t)

)
− V (0) ≥ p∗(t)K∗(t) ≥ 0

for all t > 0. Thus

e−rt
(
V
(
K∗(t)

)
− V (0)

)
≥ e−rtp∗(t)K∗(t) ≥ 0. (10.13)

Thus (10.12) and (10.13) imply

lim
t→∞

e−rtp∗(t)K∗(t) = 0.
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The economics of the transversality condition

The transversality condition also has an economic interpretation as another no-arbitrage

condition. Suppose it failed—that is, suppose that

lim sup
t→∞

e−rtp∗(t)K∗(t) = A > 0.

Suppose I adopt the strategy of running the firm until time T , then selling it and investing

the proceeds at the interest rate r. The present value of this is∫ T

0

G
(
K∗(t), I∗(t)

)
e−rt dt+ p∗(T )K∗(T )e−rT .

By choosing T large enough I can make this arbitrarily close to∫ ∞
0

G
(
K∗(t), I∗(t)

)
e−rt dt+ A,

creating an arbitrage profit of just less than A. In order for this not to profitable, the

transversality condition must hold.

The Wealth and Income Version of the Maximum Principle

This statement is sometimes called the Hamilton–Jacobi formulation, or Jacobi’s integral

form of Hamilton’s equations of motion. Under the assumptions here, the feasible trajectories

(K∗, I∗) are optimal if and only if there exists a continuous nonnegative price trajectory p∗

satisfying for all t ≥ 0,

rV
(
K∗(t)

)
= G

(
K∗(t), I∗(t)

)
+ p∗(t)I∗(t)

= H̃
(
K∗(t), I∗(t)

)
.

(10.14)

Let’s interpret this in economic terms. On the left-hand side, V
(
K∗(t)

)
is the value of

the optimal time-t capital stock, in other words it is market value of the firm’s equity

shares (wealth). So rV
(
K∗(t)

)
is flow of interest that this equity would generate if invested

at the market rate of interest (income). It is equated to the right-hand side, which consists

of two parts: G
(
K∗(t), I∗(t)

)
, the instantaneous net income, that is, the dividends paid

out; plus p∗(t)I∗(t), the value of the optimal time-t investment at prices p∗(t), which is the

firm’s internal shadow price of capital.
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10.5 Application to non-renewable resources

Consider the problem of finding the monopolistic price of oil over time. The rate of interest

is r > 0, the initial stock of oil is K0. For simplicity we shall assume this is known. Let

E(t) ≥ 0 be the amount of oil (as a flow) that is pumped and sold at time t. For simplicity

we shall assume the cost of pumping is negligible. The flow of revenue Φ from selling the

flow quantity E at a given time is given by

Φ(E) = E(θ−1)/θ,

where θ > 1. Note that the consumer price is Φ(E)/E = E−1/θ.

The monopolist therefore seeks to choose the trajectory E to maximize∫ ∞
0

E(t)(θ−1)/θe−rt dt

subject to

K(0) = K0,

K̇(t) = −E(t),

E(t) ≥ 0,

The Hamiltonian is G(K, I) + pI. Since in this problem K̇(t) = −E(t), we see that −E
plays the role of I, so I ≤ 0 and

G(K, I) = (−I)(θ−1)/θ.

Note that K does not appear in G at all! Also note that since θ > 1 and I < 0, G is

a decreasing function of I. Moreover ∂G2/∂I2 = − θ−1
θ2

(−I)−(θ+1)/θ < 0 so G is a concave

function of (K, I), as we need for the assumption of our version of the Maximum Principle.

Rewriting everything in terms of E we get as the Hamiltonian,

H(K,E, p) = E
θ−1
θ − pE (10.15)

We now find the maximum of the Hamiltonian with respect to E, fixing K and p. The first
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and second partial derivatives of the Hamiltonian with respect to E are

∂H

∂E
=
θ − 1

θ
E−1/θ − p

and
∂2H

∂E2
= −θ − 1

θ2
E−

θ+1
θ < 0.

Thus the Hamiltonian is concave in E, and ∂H
∂E
→ ∞ as E → 0. Thus the maximum with

respect to E occurs at E > 0. The first order condition for an interior maximum with respect

to E is
θ − 1

θ
E−1/θ − p = 0,

or

E∗(K, p) =

(
θ − 1

pθ

)θ
. (10.16)

The maximized Hamiltonian is therefore

H̃(K, p) =

(
θ − 1

pθ

)θ−1
− p

(
θ − 1

pθ

)θ

= p1−θ
(
θ − 1

θ

)θ((
θ − 1

θ

)−1
− 1

)

=
p1−θ

θ − 1

(
θ − 1

θ

)θ
.

(10.17)

The three necessary and sufficient optimality conditions are (substituting −E for I):

p∗(t) ≥ 0

ṗ∗(t) = −D1H̃
(
K∗(t), p∗(t)

)
+ rp∗(t)

= rp∗(t)
(10.18)

(since K does not appear in H̃). Also, E∗(t) maximizes the Hamiltonian, so by the above,

E∗(t) =

(
θ − 1

p∗(t)θ

)θ
. (10.19)
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Finally,

lim
t→∞

p∗(t)K∗(t)e−rt = 0, (10.20)

From the differential equation (10.18) we have that

p∗(t) = p∗(0)ert.

The trick is to figure out p∗(0).

But before we do that, let’s rewrite (10.19) as

E∗(t) =

(
θ − 1

p∗(t)θ

)θ
=

(
θ − 1

p∗(0)θ

)θ
︸ ︷︷ ︸

=E∗(0)

e−rθt > 0. (10.21)

That is, the extraction never stops. From (10.20)

p∗(t)K∗(t)e−rt = p∗(0)ertK∗(t)e−rt = p∗(0)K∗(t)→ 0,

which implies

K∗(t)→ 0.

That is, all of the oil will eventually be extracted. This gives us the leverage we need to pin

down p∗(0). For

K(t) = K0 −
∫ t

0

E(τ) dτ

so the condition that all the oil is extracted can be written∫ ∞
0

E(τ) dτ = K0.

From (10.21), this becomes

K0 =

∫ ∞
0

E∗(0)e−rθτ dτ

= E∗(0)

∫ ∞
0

e−rθτ dτ

=
E∗(0)

rθ

104



Theory of Value: EC 121a Fall 2021

or

E∗(0) = rθK0.

We can use this and (10.21) to solve for p∗(0):

p∗(0) =
θ − 1

θ
(rθK0)

−1/θ > 0.

Finally let π(t) denoted the price paid by consumers. As remarked above

π(t) = E(t)−1/θ = E(0)ert.

To summarize:

p∗(0) =
θ − 1

θ
(rθK0)

−1/θ.

p∗(t) = p∗(0)ert.

E∗(0) = rθK0.

E∗(t) = E∗(0)e−rθt.

K∗(t) = K0e
−rθt.

π(t) = rθK0e
rt

The relevant properties are that (i) all the oil is extracted, but it takes forever; (ii) the

shadow price p grows at the rate of interest over time, and this is independent of the form

of the revenue but does depend on the assumption that the cost of extraction is zero and

independent of the stock of oil; and (iii) the consumer price π grows at the rate of interest

over time, but this is a special property of the revenue function.

Remark 10.2. Some loose ends: Note that the theorem as stated calls for an upper and

lower bound on E and we only put a lower bound on E. We can take an arbitrarily large

upper bound, as long as it is large enough.

We also have the technical Accessibility Hypothesis to worry about. The stationary

rate of return is defined in the notes as R(K) = −D1G(K,0)
D2G(K,0)

where G(K,E) = (−E)(θ−1)/θ, so

R(K) = 0 for all K. The Accessibility Hypothesis applies if there is a K̂ satisfying R(K̂) = r,

which never occurs since r > 0. Thus the Accessibility Hypothesis is vacuously satisfied.

Remark 10.3. The costate variable p∗(t) acts as a shadow price the producer has to pay

for extracted oil. Even though the oil is sitting there and can be freely extracted, each unit
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extracted reduces the stock, and so reduces the value of the stock. The costate variable p∗

captures this value reduction.

Note that in this case, the ratio of the shadow price p∗(t) to the consumer price π(t) is

the constant p∗(0)/E∗(0). This is an artifact due the special nature of the demand curve,

which has constant price elasticity θ.

Remark 10.4. How do the trajectories change as r changes? As r increases, p∗(t) increases

for each t. See figure 10.1. As r increases, E∗(0) increases, but for large t, E∗(t) decreases.

Figure 10.1: The shadow price.

See figure 10.2. As r increases, K∗(t) decreases for each t. See figure 10.3. All figures are

Figure 10.2: The extraction rate.
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Figure 10.3: The remaining stock.

for the case θ = 1.1

10.6 Appendix: The economics of first-order linear dif-

ferential equations

This really has nothing to do with the maximum principle. The following theorem is a

standard statement of the solution to a first order linear differential equation.

Theorem 10.5 (First order linear differential equation). Assume P,Q are continuous on

the open interval I. Let a ∈ I, b ∈ R.

Then there is one and only one function y = f(x) that satisfies the initial value problem

y′ + P (x)y = Q(x) (10.22)

with f(a) = b. It is given by

f(x) = be−A(x) + e−A(x)
∫ x

a

Q(t)eA(t) dt

where

A(x) =

∫ x

a

P (t) dt.

The theorem appears a bit mysterious in this form, but I can give it an economic inter-

pretation that makes it obvious. The first thing we will do is change the variable on which
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y depends from x to time, t.

Interpret y(t) as the value of a savings account at time t. At each point of time it earns

an instantaneous rate of return r(t). Moreover, we add a “flow” of additional savings to the

account at the rate s(t). Thus the rate of change of the value of the account is

y′(t) = r(t)y(t) + s(t). (10.23)

Moreover, let’s rewrite the initial condition as y(t0) = y0. This yields the following transla-

tion.

Theorem 10.6 (First order linear differential equation). Assume r, s are continuous on the

open interval I. Let t0 ∈ I, y0 ∈ R.

Then there is one and only one function y that satisfies the initial value problem

y′ = r(t)y + s(t)

with y(t0) = y0. It is given by

y(t) = [y0 + S(t)] er(t)(t−t0)

where

r(t) =
1

t− t0

∫ t

t0

r(τ) dτ

and

S(t) =

∫ t

t0

s(τ)e−r(τ)(τ−t0) dτ.

But this version is obviously true!

Proof. We rely on the following well-known (easily proved) result:

lim
n→∞

(
1 + (r/n)

)nt
= ert.

That is, the result of compounding interest on a dollar continuously over t periods is ert

dollars.

Case 1: s = 0. If the instantaneous rate of return at time t is r(t), the average

rate of return r(t) over the interval [t0, t] is just

r(t) =
1

t− t0

∫ t

t0

r(τ) dτ.
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Now if we add nothing to the initial investment over time, that is, if s(t) = 0 for all t, then

I claim that the value of the account at time t is given by

y(t) = y0e
r(t)(t−t0). (10.24)

That is, earning the varying rate of return r over the interval [t0, t] is the same as earning

the average rate of return r over the interval. We can verify this by showing that y given by

(10.24) solves (10.23).

dy

dt
=

d

dt
y0e

r(t)(t−t0)

= y0e
r(t)(t−t0) d

dt
(r(t)(t− t0))

= y0e
r(t)(t−t0) d

dt

∫ t

t0

r(τ) dτ

= y0e
r(t)(t−t0)r(t)

= r(t)y(t),

which is (10.23) with s = 0.

Case 2: General s. But in general, the additional savings s(t) is not zero. In order

to deal with the general case, we use the incredibly useful notion of present value. If you

invest $1 at time t0 it will be worth $er(t)(t−t0) at time t, so the value at time t0, that is,

the present value of $1 at time t is e−r(t)(t−t0).

For if you invest e−r(t)(t−t0) at t0, you will have e−r(t)(t−t0)er(t)(t−t0) = 1 dollar at time t.

The present value of the flow s(t) is s(t)e−r(t)(t−t0). The present value S(t) of all the

additional savings up to time t is thus

S(t) =

∫ t

t0

s(τ)e−r(τ)(τ−t0) dτ.

But at time t this present value will be worth an additional

S(t)er(t)(t−t0).
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Thus the total value of the savings account at time t is given by

y(t) = (y0 + S(t)) er(t)(t−t0).
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Lecture 11

Introduction to Demand Theory

Read Varian, Chapters 7, 8, and 9.

11.1 Preference

Preference is comparative notion, so we represent preference as a binary relation on a set X.

x < y means x is as good as y.

x � y means x is better than y.

x ∼ y means x and y are indifferent.

Formally � and ∼ may be derived from < by

x � y ⇔ (x < yand¬ y < x)

x ∼ y ⇔ (x < yandy < x).

Neoclassical economics: Assume that < is regular. That is, it has the following proper-

ties.

1. < is transitive: For all x, y, z,

(x < y & y < z)⇒ x < z.

2. < is complete: For all x, y,

x < y or y < x (or both).
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For a regular preference <, the strict preference � is asymmetric, transitive, and irreflexive.

The indifference relation ∼ is symmetric, transitive, and reflexive. In other words it is an

equivalence relation. The equivalence class I(x) of x, that is,

I(x) = {y ∈ X : x ∼ y}

is called the indifference curve through x. These partition the set X. For each x, y ∈ X,

we have x ∈ I(x) and

I(x) ∩ I(y) 6= ∅ ⇒ I(x) = I(y).

11.2 Revealed preference

Economists believe that choices reveal preferences: Choosing x when y could have been

chosen reveals that x < y. Most of us believe that choice is the only true guide to preference.

Choice functions

• X is a set of alternatives.

• A budget is a nonempty subset of X.

• B is the set of admissible budgets.

• A choice (or choice function) is a mapping c from B to subsets of X such that for

each budget B ∈ B,

c(B) ⊂ B.

Rational choice

A choice is rational if there are preferences for the choice to reveal. That is, choice c is

rational if there is some binary relation < on X such that

c(B) = {x ∈ B : for all y ∈ B, x < y},

in which case we say that < rationalizes c.

Example 11.1 (A non-rational choice). X = {a, b, c}, B1 = {a, b, c}, B2 = {a, b}.

c(B1) = {a}, c(B2) = {b}
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is not rational, as c(B1) = {a} implies a < b and a < a, so we must have a ∈ c(B2) for

rationality.

Economic well-being (welfare)

Preferences also reflect economic welfare.

A consumer would be “worse off” if forced to consume something in the budget that is

not in the chosen set.

11.3 Prices and budgets

There are n commodities so X = Rn
+ = {x ∈ Rn : x = 0}. That is, alternatives are vectors

of quantities of commodities. Think of them as shopping carts if you’d like.

Competitive budgets

Given price vector p� in Rn, and income m, the budget is

B(p,m) = {x ∈ Rn
+ : p · x ≤ m}.

Note, for λ > 0,

B(p,m) = B(λp, λm).
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Consumption Loans budgets

Two periods (0, 1), ct is consumption at time t, mt is real income at time t, s is savings

(lending) or borrowing at t = 0, and i is the interest rate. The temporal budget constraint

is

c0 = m0 − s
c1 = m1 + (1 + i)s.

Or solving the latter for s and substituting in the former,

c0 +
c1

1 + i
= m0 +

m1

1 + i
.

m0 + m1

1+i
is the present discounted value of income. This budget constraint is equivalent

to the two separate constraints. For if

c0 +
c1

1 + i
= m0 +

m1

1 + i
,

define s = m0 − c0. Then

c0 = m0 − s
c1 = m1 + (1 + i)s.
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Budget with Labor Income

w is the real wage rate. L is labor supplied. Consumption budget is

c ≤ wL.

Let 1 be total amount of time in a period. Then ` = 1− L is leisure. The budget becomes

c+ w` ≤ w.

11.4 Normalizing budgets

Budgets are in a sense homogeneous of degree zero. That is,

for every λ > 0, B(λp, λm) = B(p,m).

Since (p,m) ∈ Rn+1, there are only n degrees of freedom in specifying budget, and we can

normmalize a (p,m) by multiplying or dividing by some λ > 0. Thus we can take as our set

of budgets

B = {B(p,m) : p� 0, m > 0},
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or we could choose some good, say good n, to be the numeraire, and set its price to unity.

In essence this measures income and prices in terms of units of good n. Since

B(p1, . . . , pn,m) = B
(p1
pn
, . . . ,

pn−1
pn

, 1,m
)
,

we can use as or set of budgets

Bn = {B(p,m) : p� 0, pn = 1, m > 0}.

Or we could normalize income to unity. Since

B(p1, . . . , pn,m) = B
(p1
m
, . . . ,

pn
m
, 1
)

we can use

Bm = {B(p,m) : p� 0, m = 1}.

Or we could divide p by the sum of its components:

B(p1, . . . , pn,m) = B
( p1∑n

i=1 pi
, . . . ,

pn∑n
i=1 pi

,
m∑n
i=1 pi

)
and use

Bsum = {B(p,m) : p� 0,
n∑
i=1

pi = 1, m > 0}.

11.5 Preferences over commodity vectors

Preferences may have properties in addition to just regularity.

Definition 11.2 (Preference sets).

P (x) = {y ∈ Rn
+ : y � x}, U(x) = {y ∈ Rn

+ : y < x},
P−1(x) = {y ∈ Rn

+ : x � y}, U−1(x) = {y ∈ Rn
+ : x < y}.

Continuity of preferences

Definition 11.3. < is upper semicontinuous if for each x, the upper set U(x) is closed.

< is lower semicontinuous if for each x, the lower set U−1(x) is closed.

< is continuous if it is both upper and lower semicontinuous.
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Proposition 11.4. For a regular preference <, the following are equivalent:

1. < is continuous.

2. The graph of <, {(x, y) ∈ Rn
+ × Rn

+ : x < y}, is closed in Rn
+ × Rn

+.

3. The graph of �, {(x, y) ∈ Rn
+ × Rn

+ : x � y}, is open in Rn
+ × Rn

+.

Nonsatiation properties

Definition 11.5. < is strictly monotonic if

x = y & x 6= y ⇒ x � y.

< is monotonic if

x� y ⇒ x � y.

< is locally nonsatiated if for every x and every ε > 0, there exists y satisfying

|y − x| < ε and y � x.

strict monotonicity⇒ monotonicity⇒ local nonsatiation

Convexity properties of preferences

Definition 11.6. < is weakly convex if

y < x⇒ (1− λ)y + λx < x, 0 < λ < 1.

< is convex if

y � x⇒ (1− λ)y + λx � x, 0 < λ < 1.

< is strictly convex if

y < x & y 6= x⇒ (1− λ)y + λx � x, 0 < λ < 1.

(Note: convexity does not imply weak convexity unless < is also upper semicontinuous.)

Proposition 11.7. Let X be convex, and let < be a regular preference on X. The following

are equivalent.
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1. < is weakly convex.

2. For each x, the strict upper contour set P (x) is a convex set.

3. For each x, the weak upper contour set U(x) is a convex set.

11.6 Utility

Definition 11.8. A function u : X → R is a utility for < if

x < y ⇔ u(x) ≥ u(y).

In this case we say that u represents <.

A utility is never unique. If f : R → R is strictly increasing, then f ◦ u is also a utility

for <.

Any function u : X → R represents some regular preference on X.

Example 11.9 (Lexicographic preferences). The lexicographic order on the plane is

defined by

(x1, x2) < (y1, y2)⇔ (x1 > y1 or (x1 = y1 and x2 ≥ y2))

Note that every indifference “curve” is a singleton!

Fact 11.10. There is no utility function that represents the lexicographic order.

11.7 Existence of utility functions

Let X = Rn
+ and let < be a regular preference on X.

Proposition 11.11. If < is continuous, then it can be represented by a continuous utility

function on X.

Proposition 11.12. If < is upper semicontinuous, then it can be represented by an upper

semicontinuous utility function on X.

Proposition 11.13. If < is continuous and strictly monotonic, then it can be represented

by a strictly increasing continuous utility function on X.

Proposition 11.14. If < is weakly convex, then any utility is quasiconcave.

If in addition, < is convex, then any utility is explicitly quasiconcave.
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11.8 Preference Maximization

Result 11.15 (Weierstrass’s Theorem). If B is a nonempty, closed, bounded subset of Rn,

and u : B → R is continuous, then u has a maximizer in B, that is, there exists x̄ ∈ such

that u(x̄) ≥ u(x) for all x ∈ B.

Example 11.16 (Failure of a maximizer to exist). Let B = [0, 1] and define u(x) =x x < 1

0 x = 1
. Then no maximizer exists. B is closed and bounded, but u is not continu-

ous.

Let B = (0, 1) and define u(x) = x. Then no maximizer exists. B is bounded, and u is

continuous, but B is not closed.

Let B = R and define u(x) = x. Then no maximizer exists. B is closed, and u is

continuous, but B is not bounded.

There is a stronger result.

Definition 11.17. A function f : X → R is upper semicontinuous if for every α ∈ R,

the set {x ∈ X : f(x) ≥ α} is closed.

A function f : X → R is lower semicontinuous if for every α ∈ R, the set {x ∈ X :

f(x) ≤ α} is closed.

Fact 11.18. A function f : X → R is continuous if and only if it is both upper and lower

semicontinuous.

Proposition 11.19. Let B be a nonempty, closed, bounded subset of Rn. If u : B → R is

upper semicontinuous, then u has a maximizer in B, that is, there exists x̄ ∈ B such that

u(x̄) ≥ u(x) for all x ∈ B.

If u is lower semicontinuous then u has a minimizer in B, that is, there exists x ∈ B

such that u(x) ≤ u(x) for all x ∈ B.

Definition 11.20. The alternative x∗ is a <-greatest alternative in the set B if x∗ ∈ B
and for every x ∈ B, we have x∗ < x.

Proposition 11.21. Let B ⊂ Rn be nonempty, closed and bounded, and assume that the

regular preference < is upper semicontinuous. Then X has a <-greatest element.

Proposition 11.22. Let B be convex, and assume that the regular preference < is strictly

convex. Then a <-greatest element is unique (if it exists).
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11.9 Demand functions

Definition 11.23 (Demand correspondence).

x∗(p,m) = {x ∈ B(p,m) : x is <-greatest in B(p,m)}.

Proposition 11.24. If < is continuous and p � 0, then x∗(p,m) is nonempty. If < is

strictly convex, then x∗(p,m) is at most a singleton.

Note that if p� 0, then B(p,m) is closed and bounded.

Proposition 11.25. x∗(p,m) is homogeneous of degree zero in (p,m), that is,

x∗(p,m) = x∗(λp, λm), λ > 0.

This is because B(p,m) = B(λp, λm).

Proposition 11.26. If < is locally nonsatiated, then

p · x∗(p,m) = m.

11.10 Expenditure minimization and utility maximiza-

tion

Theorem 11.27. If < is a continuous and locally nonsatiated regular preference on Rn
+, and

if p� 0 and m > 0, then

x∗ maximizes < over B(p,m)⇔ x∗ minimizes p · x over U(x∗).

Example 11.28 (Why m > 0 and/or p � 0 is needed). Let X = R2
+. Let preferences be

defined by the utility function u(x1, x2) = x1 + x2. (This preference relation is continuous,

convex, and locally nonsatiated.) Let x∗ = (1, 0) and p = (0, 1). Then x∗ minimizes p ·x over

U(x∗). But B(p, p · x∗) = B(p, 0), which is just the x1-axis. This budget set is unbounded

and no <-greatest element exists. See figure 11.1.
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Figure 11.1: Example of nonequivalence of expenditure minimization and utility maximiza-
tion.

11.11 Indirect utility and expenditure functions

Let x∗ denote the ordinary demand function. The indirect utility v is the optimal value

function for the consumer’s utility maximization problem.

v(p,m) = u
(
x∗(p,m)

)
.

Proposition 11.29. v is quasi-convex in (p,m) and homogeneous of degree zero in (p,m).

Proof. Homogeneity follows from B(λp, λm) = B(p,m). For quasiconvexity, we need to

show that for any (p,m) and (p′,m′), and 0 ≤ λ ≤ 1 that

v
(
(1− λ)p+ λp′, (1− λ)m+ λm′

)
≤ max{v(p,m), v(p′,m′)}.

So let xλ be demanded from the budget Bλ = B
(
(1−λ)p+λp′, (1−λ)m+λm′

)
. Observe that

xλ must belong to at least one of B(p,m) or B(p′,m′). For if this were not the case, we would

have p·xλ > m and p′ ·xλ > m′, which would imply that
(
(1−λ)p+λp′

)
·xλ > (1−λ)m+λm′,

contradicting the the fact that xλ was chosen from Bλ.

Now if xλ ∈ B(p,m), by definition of the indirect utility v we would have u(xλ) ≤ v(p,m).
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Ditto for (p′,m′), so

v
(
(1− λ)p+ λp′, (1− λ)m+ λm′

)
= u(xλ) ≤ max{v(p,m), v(p′,m′)}.

The expenditure function e is the optimal value function for the expenditure mini-

mization problem

min
x
p · x subject to u(x) ≥ υ

The solution x̂(p, υ) is called the Hicksian compensated demand.

Proposition 11.30. x̂ is homogeneous of degree 1 in p.

The expenditure function is

e(p, υ) = p · x̂(p, υ)
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Lecture 12

Further Topics in Demand Theory

12.1 Duality, the Envelope Theorem, and Demand

The following descriptions summarize the properties of the solutions to the utility maximiza-

tion and expenditure minimization problems.

Utility Maximization Properties

• Problem statement:

max
x

u(x) subject to m− p · x ≥ 0

• Optimal solution: Ordinary Walrasian Demand x∗(p,m); homogeneous of degree zero

in (p,m).

• Optimal value function: v(p,m) = u(x∗(p,m)); quasiconvex in (p,m) and homogeneous

of degree zero in (p,m).

• Lagrangian:

L(x, λ; p,m) = u(x) + λ(m− p · x)

• Partials w.r.t parameters:

∂L(x, λ; p,m)

∂pj
= −λxj

∂L(x, λ; p,m)

∂m
= λ
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• Envelope Theorem:

∂v(p,m)

∂pj
= −λ∗(p,m)x∗j(p,m)

∂v(p,m)

m
= λ∗(p,m)

Expenditure Minimization Properties

• Problem statement:

min
x
p · x subject to u(x)− υ ≥ 0

• Optimal solution: Hicksian Compensated Demand x̂(p, v); homogeneous of degree zero

in (p,m).

• Optimal value function:e(p, υ) = p · x̂(p, υ); concave in p, and homogeneous of degree

1 in p.

• Lagrangian:

L(x, µ; p, υ) = p · x− µ
(
u(x)− υ

)
• Partials w.r.t parameters:

∂L(x, µ; p, υ)

∂pj
= xj

∂L(x, µ; p, υ)

∂υ
= µ

• Envelope Theorem:

∂e(p, υ)

∂pj
= x̂j(p, υ)

∂e(p, υ)

∂υ
= µ̂(p, υ)

Differentiating the equivalence m = e
(
p, v(p,m)

)
with respect to m yields

1 =
∂e
(
p, v(p,m)

)
∂υ

∂v(p,m)

∂m
= µ̂

(
p, v(p,m)

)
λ∗(p,m),
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or equivalently,

µ̂
(
p, v(p,m)

)
=

1

λ∗(p,m)
and µ̂(p, υ) =

1

λ∗
(
p, e(p, υ)

) .
From the equivalence

x̂(p, υ) = x∗
(
p, e(p, υ)

)
we have

∂x̂i(p, υ)

∂pj
=
∂x∗i
(
p, e(p, υ)

)
∂pj

+
∂x∗i
(
p, e(p, υ)

)
∂m

∂e(p, υ)

∂pj
.

But ∂e(p,υ)
∂pj

= x̂j(p, υ) = x∗j
(
p, e(p, υ)

)
. Set m = e(p, υ), and write

∂x̂i(p, υ)

∂pj
=
∂x∗i (p,m)

∂pj
+ x∗j(p,m)

∂x∗i (p,m)

∂m

which implies the Slutsky equation

∂x∗i (p,m)

∂pj
=
∂x̂i(p, υ)

∂pj
− x∗j(p,m)

∂x∗i (p,m)

∂m
,

where υ = v(p,m), which decomposes the effect of a price change into its substitution effect

and income effect. But
∂x̂i(p, υ)

∂pj
=
∂2e(p, υ)

∂pi∂pj
,

so since e is concave in p, its Hessian is negative semidefinite (and symmetric), so the matrix[
∂x∗i (p,m)

∂pj
+ x∗j(p,m)

∂x∗i (p,m)

∂m

]
is negative semidefinite and symmetric.

Consequently the diagonal terms satisfy

∂x̂i(p, υ)

∂pi
=
∂x∗i (p,m)

∂pi
+ x∗i (p,m)

∂x∗i (p,m)

∂m
≤ 0,

and we have the unusual reciprocity relation

∂x∗i (p,m)

∂pj
+ x∗j(p,m)

∂x∗i (p,m)

∂m
=
∂x∗j(p,m)

∂pi
+ x∗i (p,m)

∂x∗j(p,m)

∂m
.
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